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Chapter 1

Statement of the conjecture

We begin with an example to motivate the rank one abelian Stark conjecture.

1.1 A cyclotomic example

Let f be a positive integer, and let a be an integer relatively prime to f . Define the partial
zeta function

ζf (a, s) =
∞∑
n=1

n≡a (f)

1

ns
, s ∈ C,Re(s) > 1.

Here the sum ranges over positive integers n congruent to a modulo f . If a is chosen in the
range 0 < a ≤ f , then ζf (a, s) is related to the Hurwitz zeta function

ζH(x, s) :=
∞∑
n=0

1

(x+ n)s
, x, s,∈ C,Re(x) > 0,Re(s) > 1,

by the relation

ζf (a, s) = f−sζH

(
a

f
, s

)
.

The function ζf (a, s) has a meromorphic continuation to C, with a simple pole at s = 1 and
no other poles. Since ζH(x, s) has a simple pole with residue 1 at s = 1, the Taylor expansion
of ζf (a, s) at s = 1 begins

ζf (a, s) =
1

f
· 1

s− 1
+ b(a, f) + · · · .

Stark’s conjecture in this setting concerns the constants b(a, f). However, the statement
and generalization of the conjecture is cleaner if we change the point of interest from s = 1
to s = 0. These two points are related by the functional equation for the ζf (a, s), and hence
contain the same “information.” The constants b(a, f) appear (after a simple transformation)
as the leading terms of the Taylor expansions of ζf (a, s) at s = 0, and it is these leading
terms that we will study.

7



8 CHAPTER 1. STATEMENT OF THE CONJECTURE

We assume that f 6= 1, and we consider the symmetrized zeta functions

ζ+
f (a, s) = ζf (a, s) + ζf (−a, s).

As we discuss in greater generality below, this symmetrization ensures that ζ+
f (a, 0) = 0;

indeed, for 0 < a < f we have ζf (a, s) = 1
2
− a

f
. Using the classical formula

d

ds
ζH(x, s)|s=0 = log Γ(x)− 1

2
log(2π)

for the derivative of the Hurwitz zeta function at s = 0, one finds that the Taylor expansion
of ζ+

f (a, s) at s = 0 begins:

ζ+
f (a, s) = c(a, f)s+ . . . ,

where

c(a, f) = log
Γ( a

f
)Γ(1− a

f
)

2π

=− log

(
2 sin

(
πa

f

))
=− 1

2
log

(
2− 2 cos

(
2πa

f

))
.

We may write

c(a, f) = −1

2
log(u(a, f)) where u(a, f) = (1− ζaf )(1− ζ−af ). (1.1)

Here ζf := e2πi/f , and u(a, f) is an f -unit in the totally real cyclotomic field

Q(ζf )
+ = Q(ζf + ζ−1

f ) ⊂ Q(ζf ).

Furthermore, if f is divisible by at least two distinct primes, then u(a, f) is actually a unit,
not just an f -unit.

In summary, we have shown that the partial zeta function ζ+
f (a, s) has a zero at s = 0, and

that its derivative at s = 0 is the constant −1/2 times the logarithm of an f -unit. Stark’s
rank one abelian conjecture is a generalization of this statement to abelian extensions of
number fields K/F , in place of Q(ζf )

+/Q in this example. The reason that we considered the
symmetrized zeta function ζ+

f (a, s) rather than ζf (a, s) (and correspondingly the extension
Q(ζf )

+ rather than Q(ζf )) is that the real place of Q splits completely in Q(ζf )
+, but not

in Q(ζf ). Stark’s conjecture, as formulated by Tate, considers more generally any place of
F that splits completely in K—real, complex, or finite.

1.2 The conjecture

Let K/F denote an abelian extension of number fields with associated rings of integers
OK ,OF . Let S denote a finite set of places of F containing the archimedean places and
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those which ramify in K. Assume that S contains at least one place v that splits completely
in K and that |S| ≥ 2. For each ideal n ⊂ OF not divisible by a prime that ramifies in K, we
denote by σn the associated Frobenius element in G := Gal(K/F ). For each element σ ∈ G,
we define the partial zeta function

ζK/F,S(σ, s) :=
∑
n⊂OF

(n,S)=1, σn=σ

1

Nns
, s ∈ C, Re(s) > 1. (1.2)

Here Nn denotes the norm of the ideal n. In the example of Section 1.1, we have F = Q,
K = Q(ζf )

+, S = {∞, p | f}, and ζf (a, s) = ζK/F,S(σa, s). Each function ζK/F (σ, s) has
a meromorphic continuation to C, with a simple pole at s = 1 and no other poles. As
explained in the Section 1.3, the fact that S contains a place v that splits completely in K
ensures that ζK/F,S(σ, 0) = 0 for all σ ∈ G. Denote by e the number of roots of unity in K.
Let Uv,S = Uv,S(K) denote the set of elements u ∈ K× such that:

• if |S| ≥ 3, then |u|w′ = 1 for all w′ - v;

• if S = {v, v′}, then |u|w′ is constant over all w′ above v′, and |u|w′ = 1 for all w′ 6∈ S.

The following is the rank one abelian Stark conjecture.

Conjecture 1.1 (Stark). Fix a place w of K lying above v. There exists a u ∈ Uv,S such
that

ζ ′K/F,S(σ, 0) = −1

e
log |uσ|w for all σ ∈ G (1.3)

and such that K(u1/e)/F is an abelian extension.

In the example of Section 1.1, we had

u = u(1, f) = (1− ζf )(1− ζ−1
f ) = 2− 2 cos

(
2π

f

)
,

uσa = u(a, f).

We checked equation (1.3) and the condition u ∈ Uv,S in the case when f is divisible by at
least 2 primes (i.e. when |S| ≥ 3). Exercise: in this example, check that u ∈ Uv,S in the case
|S| = 2, and that the condition that K(u1/e)/F is abelian holds.

Returning to the general case, note that the conditions u ∈ Uv,S and equation (1.3)
together specify the absolute value of u at every place of K. Therefore, if the unit u exists,
it is unique up to multiplication by a root of unity in K×. In order to state an alternate
equivalent version of Conjecture 1.1 in which the relevant unit is actually unique (not just
up to a root of unity), we introduce a finite set T of primes of F such that S ∩ T = ϕ. We
define “smoothed” zeta functions ζK/F,S,T (σ, s) by the group ring equation∑

σ∈G

ζK/F,S,T (σ, s)[σ−1] =
∏
c∈T

(1− [σ−1
c ] Nc1−s)

∑
σ∈G

ζK/F,S(σ, s)[σ−1] (1.4)
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in C[G]. For example, if T is a one-element set {c}, then

ζK/F,S,T (σ, s) = ζK/F,S(σ, s)− Nc1−sζK/F,S(σσ−1
c , s).

Let Uv,S,T denote the finite index group of Uv,S consisting of the u ∈ Uv,S such that u ≡ 1
(mod cOK) for every prime c ∈ T . We assume that there are no non-trivial roots of unity
in Uv,S,T . This condition is automatically satisfied if either T contains two distinct primes
with different residue characteristics, or one prime with residue characteristic at least 2 plus
its absolute ramification index.

Stark’s rank one abelian conjecture has the following equivalent formulation. It was
stated by Tate in this form in [33].

Conjecture 1.2 (Stark–Tate). Fix a place w of K lying above v. There exists an element
uT ∈ Uv,S,T such that

ζ ′K/F,S,T (σ, 0) = − log |uσT |w for all σ ∈ G. (1.5)

Note that uT , if it exists, is uniquely determined by the conditions of Conjecture 1.2
since we have assumed that Uv,S,T contains no non-trivial roots of unity. Exercise: check the
equivalence of Conjectures 1.1 and 1.2 (see [33]); the elements u and uT of the two conjectures
are related by the equation uT = (u1/e)gT , where gT =

∏
c∈T (1− [σ−1

c ] Nc) ∈ Z[G]. Note that
gT annihilates roots of unity.

1.3 Further motivation—L-functions

Conjecture 1.1 can be motivated by viewing it as a generalization of the Dirichlet class
number formula. For a finite set of places S of F containing the infinite places, the S-
imprimitive Dedekind zeta function of F is the special case of the function ζK/F,S defined in
(1.2) for K = F , namely,

ζF,S(s) :=
∑
n⊂OF
(n,S)=1

1

Nns
=
∏
p6∈S

(1− Np−s)−1, Re(s) > 1. (1.6)

Here p ranges over the set of primes of F not contained in S. The function ζF,S can be
extended to a meromorphic function on the complex plane that satisfies a functional equation
relating the values at s and 1− s. The function ζF,S has a simple pole at s = 1; the Dirichlet
class number formula gives the residue at this pole. Using the functional equation, the
Dirichlet class number formula has the following elegant formulation at s = 0:

Theorem 1.3. The Taylor series of ζF,S(s) at s = 0 begins:

ζF,S(s) = −hSRS

eF
s|S|−1 +O(s|S|), (1.7)

where hS and RS are the S-class number and S-regulator of F defined below, and eF is the
number of roots of unity in F .
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Note that the order of vanishing of ζF,S(s) at s = 0 is the rank

rS = |S| − 1 (1.8)

of the group of S-units O×F,S, as given by the Dirichlet unit theorem,. The S-class number
of F is defined as hS = |Cl(OF,S)|, the class number of the ring of S-integers of F . The
group Cl(OF,S) may be identified with the quotient of the usual class group Cl(OF ) by the
subgroup generated by the images of the finite primes in S. The S-regulator of F is defined
as follows. Let u1, . . . , urS be a basis for the quotient of O×F,S by its torsion subgroup. Denote
the elements of S by v0, v1, . . . , vrS . Then the S-regulator of F is the absolute value of the
determinant of a certain (rS × rS)-matrix:

RS =
∣∣det(log(|ui|vj))1≤i,j≤rS

∣∣ .
Notice that the place v0 has been ignored in the definition of RS. One checks that the
definition of RS is independent of the various choices made.

Now let us turn to our setting of interest, namely a finite abelian extension K/F of
number fields. For each character χ: G → C× we define an associated L-function by the
formula

LS(χ, s) =
∑
σ∈G

χ(σ)ζK/F,S(σ, s) =
∑
n⊂OF
(n,S)=1

χ(σ)

Nns
, (1.9)

where the second formula holds for Re(s) > 1. In certain respects, the L-functions of
characters are better behaved than the partial zeta functions ζK/F,S(σ, s). For instance, they
posses Euler products:

LS(χ, s) =
∏
p6∈S

(
1− χ(p) Np−s

)−1
. (1.10)

Furthermore, there is a functional equation relating LS(χ, s) and LS(χ, 1 − s). Also, there
is an explicit formula for the order of vanishing of LS(χ, s) at s = 0:

rS(χ) = dimC(O×SK ⊗C)χ
−1

=

{
|{v ∈ S : χ(Gv) = 1}| if χ 6= 1

|S| − 1 if χ = 1,
(1.11)

where SK denotes the set of places of K above the places in S, Gv ⊂ G denotes the decom-
position group at v, and the superscript χ−1 denotes the “χ−1-component”:

(O×SK ⊗C)χ
−1

:= {x ∈ O×SK ⊗C : σ(x) = χ−1(σ)x for all σ ∈ G}.

The zeta function ζK,SK (s) can be factored in terms of the L-functions associated to the
abelian extension K/F :

ζK,SK (s) =
∏
χ∈Ĝ

LS(χ, s). (1.12)
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Note that the factor on the right corresponding to χ = 1 is LS(1, s) = ζF,S(s). This fac-
torization formula can proven directly from the Euler products (1.6) and (1.10). (Exercise
1: Prove (1.12). Exercise 2: prove that (1.12) is consistent with the orders of vanishing at
s = 0 of both sides given by (1.8) and (1.11), i.e. prove that

|SK | − 1 = |S| − 1 +
∑
χ 6=1

|{v : χ(Gv) = 1}|.)

Stark’s motivation for his conjectures was the idea that in harmony with equation (1.12), the
leading term −hSKRSK/eK of ζK,SK (s) at s = 0 should factor in a nice way over the various
characters χ. More precisely, the leading term of LS(χ, s) at s = 0 should be expressible as
a rational number times the determinant of an rS(χ)× rS(χ)-matrix whose entries are linear
forms of logarithms of elements of (O×SK ⊗C)χ

−1
.

We do not deal with the general formulation of Stark’s conjecture in this article. Instead,
we concentrate on the “rank one” setting, which concerns only the first derivative of LS(χ, s)
at s = 0 in the case rS(χ) ≥ 1 for all χ. The reason that in the statement of the rank one
abelian Stark conjecture (Conjecture 1.1) we assume that |S| ≥ 2 and that S contains a
place that splits completely in K (i.e. such that Gv = 1) is that this implies that rS(χ) ≥ 1
for all χ, by (1.11). Using equation (1.9), one easily checks that the following is an equivalent
formulation of the conjecture.

Conjecture 1.4 (Stark). Suppose that v ∈ S splits completely in K, and fix a place w ∈ SK
above v. There exists a u ∈ Uv,S such that

L′S(χ, 0) = −1

e

∑
σ∈G

χ(σ) log |uσ|w for all χ ∈ Ĝ (1.13)

and such that K(u1/e)/F is an abelian extension.

Note that the element

uχ
−1

:=
∑
σ∈G

uσ ⊗ χ(σ) ∈ O×K,S ⊗C

lies in (O×K,S ⊗C)χ
−1

, and that the sum in (1.13) is simply the value of the linear extension

of log | · |w to O×K,S ⊗C, evaluated at uχ
−1
.

If |S| ≥ 3 and S contains at least two places that split completely in S, then r(χ) ≥ 2
for all χ and Conjecture 1.4 holds trivially with u = 1. Exercise: prove that Conjecture 1.4
holds if |S| = 2 and both places of S split completely in K.

We conclude this section by noting that Stark’s conjecture is known to be true in the
cases where one has an explicit class theory. Namely, when F = Q and v is the infinite place,
we essentially proved Conjecture 1.1 in Section 1.1 using the cyclotomic units u(a, f) defined
in (1.1). When F = Q and v is a finite prime p, Conjecture 1.1 follows from Stickelberger’s
Theorem (see the discussion in Section 1.6). When F is a quadratic imaginary field, Stark
proved the conjecture himself using the theory of elliptic units and Kronecker’s second limit
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formula [32]. There are certain other special cases known. For example, if K/F is a quadratic
extension, then one can prove Conjecture 1.4 since the leading term of LS(χ, s) for the
nontrivial character χ ∈ Ĝ is determined by the factorization formula (1.12)

LS(χ, s) =
ζK,SK (s)

ζF,S(s)

together with the Dirichlet class number formula (1.7). Sands generalized this method to
prove Conjecture 1.4 when the abelian group G has exponent 2 and the place v is finite (with
some small exceptions) [21]. We do not attempt to give a complete list of the known cases of
the conjecture here, but we remark that the only ground fields F for which the conjecture is
known for all abelian extensions K/F are the ones mentioned already, namely F = Q and F
a quadratic imaginary field. In this article, we consider Conjecture 1.4 in all cases for which
it applies and is nontrivial.

1.4 Trichotomy of the conjecture

In view of the fact that the rank one abelian Stark conjecture holds trivially when S contains
two primes that split completely in K, we need only consider the setting where S contains
exactly one prime v that splits completely in K. Since complex places split completely in
every extension, we are left with the following possibilities:

• Case TR∞: F is totally real, and the place v is real. The places of K above v are real,
and all other archimedean places are complex.

• Case ATR: F is “almost totally real,” i.e. it has one complex place v and all other
places are real. The field K is totally complex.

• Case TRp: F is totally real and the place v is finite. The field K is totally complex.

In case TR∞, equation (1.3) gives an exact formula for u and its conjugates up to sign:

uσ = ± exp(−2ζ ′K/F,S(σ, 0)) in the real embedding w. (1.14)

Exercise: As mentioned before, the Stark unit u is only unique up to sign. Prove, however,
that the condition that K(u1/2)/F is abelian implies that the sign of uσ in the real embedding
w is the same for all σ. Therefore, we may make the convention that the sign in (1.14) is +
for all σ.

Equation (1.14) has striking implications for explicit class field theory for the extension
K/F . In computational terms, it is possible to write down the characteristic polynomial
of uT over F in the real embedding v by taking as coefficients the appropriate elementary
symmetric functions of the values in (1.14). Then, assuming that a basis for OF is known,
it is possible to “recognize” these real numbers as elements of F using standard lattice
algorithms (such as LLL) and thereby write down the characteristic polynomial of u as an
element of F [x]. In this way, Stark’s conjecture in case TR∞ can be viewed as giving progress
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towards an explicit class field theory for F and has significance in the study of Hilbert’s 12th
problem. Many computations of this form were carried out in [13].

Exponentiating (1.5) provides the following formula analogous to (1.14) for uT and its
conjugates:

uσT = ± exp(−ζ ′K/F,S,T (σ, 0)) in the real embedding w. (1.15)

The units uT are unique (not just up to sign). In [16], Gross stated a general conjecture that
in particular addresses the question of the ± signs in (1.15). Gross’s conjectures will be the
topic of the next chapter.

Let us now consider case ATR. Since the place w is complex, inverting equation (1.5)
only yields a formula for the absolute value of uT and its conjugates:

|uσT |w = exp(−ζ ′K/F,S,T (σ, 0)).

This equation does not provide a formula for the image of uT ∈ C under the embedding
w itself. The distinction with case TR∞ is that the group of elements of C× with absolute
value 1 is an entire circle, not merely the finite set {±1}. Unless we can somehow specify
the argument of the complex number uT , it is not possible to directly write down the char-
acteristic polynomial of uT as an element of F [x] as simply as we suggested in case TR∞.1

Therefore, in case ATR, Stark’s conjecture does not directly make contact with explicit class
field theory and Hilbert’s 12th problem. This leads us to the central motivating question
addressed by this article.

Question 1.5. Can we give, in all three cases of the rank one abelian Stark conjecture, an
exact formula for the image of uT at the place w rather than just a formula for its absolute
value?

As we will see, the answer to this question is “yes,” though the formulas that arise are
not stated as succinctly as Stark’s conjecture. Since equation (1.14) together with Gross’s
Conjecture 2.1 essentially answers this question in case TR∞, we concentrate on the two
other cases in this article. (There are, however, several interesting papers featuring alternate
conjectural constructions of Stark’s units in case TR∞, including [27], [1], and [35].)

In the ATR case, there are two techniques for deriving formulas for uT ∈ C. Ren
and Sczech [20] construct candidates for Stark units using Shintani’s method, especially his
decomposition of the quantity ζ ′K/F,S(σ, 0) in the case where K/F is complex cubic. Another

approach, based on periods of Eisenstein series, was developed by Charollois and Darmon [4].
This theory is applicable in the case where the ATR field F admits a totally real subfield
F+ with [F : F+] = 2. Extending these constructions to arbitrary ATR fields and unifying
them is an interesting open problem.

1.5 The Brumer–Stark–Tate conjecture

Let us unwind Conjecture 1.2 in case TRp, where F is a totally real field and v is a finite
prime p ⊂ OF . In this case, we may define R = S − {p} and consider the partial zeta

1See, however, the computations of Stark units carried out for cubic ATR fields in [14].
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function ζK/F,R,T (σ, s). Since p splits completely in K, we have

ζK/F,S,T (σ, s) = (1− Np−s)ζK/F,R,T (σ, s).

Differentiating and evaluating at s = 0, we obtain the following expression for the left side
of (1.5):

ζ ′K/F,S,T (σ, 0) = (log Np) · ζK/F,R,T (σ, 0).

Meanwhile, for the right side of (1.5), we fix a place w = P above p and note that

− log |uσT |P = (log Np) ordP(uσT ),

where ordP ∈ Z is the usual P-adic valuation. Equation (1.5) can hence be written

ordP(uσT ) = ζK/F,R,T (σ, 0). (1.16)

This equation makes sense, because it is known that the right side of (1.16) is an integer.
This integrality result is due independently to Deligne–Ribet [12], Cassou-Nogues [3], and
Barsky [2]. We will give a proof in the case that F is a real quadratic field (and describe the
proof of a partial result in the general totally real field case) in Chapter 4.

The left side of (1.16) can alternatively be written ordPσ
−1 (uT ). Therefore if we let

θR,T :=
∑
σ∈G

ζK/F,R,T (σ, 0)[σ−1] ∈ Z[G],

then the element uT ∈ K× (which is a unit outside the places above p) is a generator of the
ideal

PθR,T =
∏
σ∈G

(Pσ−1

)ζK/F,R,T (σ,0).

These steps are reversible—if PθR,T is a principal ideal admitting a generator uT satisfy-
ing |uT | = 1 at all archimedean places of K and uT ≡ 1 (mod cOK) for all c ∈ T , then
Conjecture 1.2 holds for the data (K/F, S, T, p).

Let us consider Conjecture 1.2 as the ideal p varies. Let IK,T denote the group of fractional
ideals of K relatively prime to T . For any a ∈ IK,T , consider the condition

aθR,T = (u) (1.17)

for some u ∈ K× such that |u| = 1 at every archimedean place of K and u ≡ 1 (mod c) for
all c ∈ T .2 The set of a satisfying this condition is clearly a subgroup of IK,T . It is easy to
check that this subgroup contains the subgroup PK,T ⊂ IK,T generated by principal ideals
(α) where α ≡ 1 (mod c) for all c ∈ T . In particular, condition (1.17) depends only on the
image of a in the generalized class group AK,T := IK,T/PK,T . It is an easy exercise using the
Cebotarev Density Theorem that the images of the primes P lying above primes p 6∈ R ∪ T
that split completely in K generate the group AK,T . Therefore, Conjecture 1.2 for the data
(K/F,R ∪ {p}, T, p) as p ranges over all primes not in R ∪ T that split completely in K is
equivalent to the following statement.

2For u ∈ K×, u ≡ 1 (mod c) means ordq(u− 1) ≥ ordq(c) for all primes q of K dividing cOk.
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Conjecture 1.6 (Brumer–Stark–Tate). For all a ∈ IK,T , we have aθR,T = (u) for some
u ∈ K× such that |u| = 1 at every archimedean place of K and u ≡ 1 (mod c) for all c ∈ T .

This conjecture was actually formulated by Tate. However, the fact that θR,T annihilates
the class group of K had been conjectured earlier by Brumer as a generalization of Stick-
elberger’s Theorem (which is a proof of this fact in the case F = Q). Tate supplemented
Brumer’s conjecture by adding the condition that not only should aθR,T be principal for every
ideal a ⊂ OK relatively prime to R and T , but it should be generated by an element con-
gruent to 1 (mod cOK) for all c ∈ T and with absolute value 1 at every archimedean place.
This condition was inspired by (Tate’s formulation of) Stark’s Conjecture (Conjecture 1.2).
For this reason, Tate called Conjecture 1.6 the Brumer–Stark conjecture; we have taken the
liberty of adding Tate’s name above.

The formulation of Conjecture 1.6 shows that Stark’s conjecture in case TRp is finite in
the sense that it is true if we allow ourselves to multiply both sides of (1.5) by a sufficiently
large positive integer. More precisely, the “rational” (as opposed to “integral”) version of
Stark’s conjecture in case TRp is true rather trivially:

Proposition 1.7. Let F be a totally real field, and let p be a finite prime that splits completely
in the totally complex finite abelian extension K. Let S and T be as above, with p ∈ S. There
exists a unique uT ∈ Up,S,T ⊗Q such that

ζK/F,R,T (σ, 0) = ordP(uσT )

for all σ ∈ G.

Here the P-adic valuation Up,S,T → Z has been linearly extended to Up,S,T ⊗Q→ Q.

Proof. Let h denote the size of AK,T , and write Ph = (α). Then

uT = αθR,T ⊗ 1
h

is the desired element of Up,S,T ⊗Q.

Stark’s conjecture in case TRp gives rather little information about the p-unit uT ; namely,
it describes the valuations of uT at all the primes above p. In Chapter 2, we discuss two
conjectures of Gross that refine Stark’s conjecture in case TRp by providing more information
about uT . Gross’s “weak” conjecture describes the p-adic logarithm of the local norm of uT
from KP to Qp in terms of the derivative at zero of the p-adic partial zeta functions of F .
Gross’s “strong” conjecture, which applies in case TR∞ as well, is a strengthening that gives
the image of uT under the Artin reciprocity map of local class field theory.

We will provide an even stronger refinement of Stark’s conjecture in case TRp in Chapter 4
by presenting an exact analytic formula for uT in the completion KP. This conjecture will
answer our motivating question in case TRp.
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1.6 Units, Shintani’s method, and group cohomology

The fields for which explicit theory class field theory is best understood are the rational field
Q and quadratic imaginary fields. Not coincidentally, these fields are distinguished by the
fact that their unit groups are finite. In general, the special values of partial zeta functions
of a number field F can often be expressed as periods parameterized by the unit group of
F . We leave the term “period” in this context vague, but we have in mind an integral of
a differential r-form along an r-cycle, where r is the rank of the unit group of F . As an
example of such a formula, see Theorem 4.1 below. When r = 0, this “integral” degenerates
to the value of a function—for example the function e(x) := e2πix for F = Q and to elliptic
functions for the case of F an imaginary quadratic field. Using CM theory, the values of
these functions can be interpreted as invariants of algebraic objects and hence shown to be
algebraic (and in fact, units living in the desired abelian extensions).

Units in the ground field F , therefore, play an important obstruction in our understanding
of class field theory in general3 and Stark’s conjectures in particular. In fact, the units in
F will provide an obstacle to answering our motivating question, i.e. to providing exact
formulas for Stark units. See (2.4) below for an explicit manifestation of this phenomenon
in the case TRp.

There are two broad principles that have appeared in the literature towards circumvent-
ing the obstruction provided by units in attempts to give exact formulas for Stark units.
One method, inspired by Shintani’s work, is to embed F into Rn and to choose a funda-
mental domain for the action of the units of F that consists of a union of simplicial cones.
One removes the ambiguity caused by units by considering only the elements of F lying in
this fundamental domain; at the conclusion of any construction, one must prove that the
construction is independent of the domain chosen. Shintani’s method is the motivation for
the works [27], [20], and [11], and is the topic of Chapter 3.

Another approach to deal with units in F is define a universal object—namely a certain
“Eisenstein” cohomology class—that contains more information than the special values of
the partial zeta functions of the number field F . To be (slightly) more precise, these classes
will be in Hr(Γ) for a group Γ equipped with homomorphism ϕF : O×F → G. The class
will have the property that special values of the partial zeta functions of F will appear as
specializations of the class on the image of a basis of units under ϕF . Our conjectural formula
for Stark units will occur as certain other specializations. One interesting feature is that our
cohomology class will be universal in the sense that it does not depend on F , only its degree.
The main point in this construction is that instead of considering an r-dimensional period of
one function, we have lifted to an entire r-dimensional cohomology class. The cohomological
method, with particular attention paid to the construction of Sczech [24] and its refinement
in [5], is the topic of Chapter 4.

Solomon [30], [31], Hu [18], and Hill [17] have begin to unify these two approaches by
defining certain cohomology classes using Shintani’s method. The goal of the group project at

3Note, however, that there is a general CM theory that applies to CM number fields. This theory involves
the study of abelian varieties and their endomorphisms. While much has been done in this direction, it is
interesting to note that the (higher rank) Stark conjectures remain open for CM fields of degree greater than
2.
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the Arizona Winter School will be to further develop this connection by finding relationships
between the various different constructions of Eisenstein cohomology classes.



Chapter 2

Gross’s conjectures

In 1988, Gross stated a conjectural refinement of Stark’s Conjecture 1.2 [16]. In this chapter
we state Gross’s conjecture and study its implications in cases TR∞ and TRp.

2.1 Gross’s tower of fields conjecture

Let the abelian extension K/F and finite sets of primes S and T of F be fixed as before, with
the place v ∈ S splitting completely in K. Assume that Conjecture 1.2 holds. Let L be a
finite abelian extension of F containingK and unramified outside S. Since v splits completely
in K and w is a place of K above v, there is a canonical isomorphism of completions:
Fv ∼= Kw. Let

recw : Kw −→ A×K −→ Gal(L/K) (2.1)

denote the Artin reciprocity map of local class field theory. From the canonical inclusion
K× ⊂ K×w , we may evaluate recw on any element of K×. The following is [16, Conjecture
7.6].

Conjecture 2.1 (Gross, strong form). Let uT ∈ Uv,S,T ⊂ K× denote Stark’s unit satisfying
Conjecture 1.2. Then

recw(uσT ) =
∏

τ∈Gal(L/F )
τ |K=σ

τ−ζL/F,S,T (τ,0) (2.2)

in Gal(L/K) for each σ ∈ G.

Note that the right side of (2.2) lies in Gal(L/K) since∑
τ∈Gal(L/F )
τ |K=σ

ζL/F,S,T (τ, 0) = ζK/F,S,T (σ, 0) = 0.

2.2 Signs in case TR∞

Let us consider Gross’s Conjecture 2.1 in case TR∞. Here v and w are real places. Suppose
that the places above v in the auxiliary extension L/F are complex; choose such a place

19
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w′ above w. Let c ∈ Gal(L/K) denote the restriction to L of the complex conjugation on
Lw′ ∼= C. Then for x ∈ K×w ∼= R×, we have

recw x =

{
1 if x > 0

c if x < 0.

Therefore, Gross’s Conjecture 2.1 applied to this setting determines the signs of the unit uσT
in the real embedding w that were left ambiguous in (1.14). For example, if L is a quadratic
extension of K, then the two elements τ, τ ′ ∈ Gal(L/F ) restricting to a given σ ∈ G satisfy

τ ′ · τ−1 = c, ζL/F,S,T (τ ′, 0) = −ζL/F,S,T (τ, 0).

Therefore the right side of (2.2) simplifies to cζL/F,S,T (τ,0), and we find that Conjecture 2.1
states:

uσT > 0⇐⇒ ζL/F,S,T (τ, 0) is even.

More generally, if L/K is not necessarily quadratic, we choose representatives {τi} for

{τ ∈ Gal(L/F ) : τ |K = σ}/{1, c}

and find that Conjecture 2.1 states:

uσT > 0⇐⇒
[L:K]/2∑
i=1

ζL/F,S,T (τi, 0) is even.

Exercise: Using class field theory, give necessary and sufficient conditions for the existence
of an abelian L/F unramified outside S and with the places of L above v complex. In
these cases Gross’s Conjecture 2.1 can be used with the extension L (or more precisely its
compositum with K) to determine the sign of uσT .

2.3 Gross’s conjecture in case TRp

We now consider the implications of Gross’s conjecture 2.1 in case TRp. Let F be a totally
real field, let v be a finite place p, and let K be totally complex finite abelian extension of
F in which p splits completely. For concreteness, we assume that K is the maximal such
extension with its given conductor f, that is, we assume that K is the maximal subfield of
the narrow ray class field of F of conductor f in which p splits completely.

Next, we take the field L = Ln in the statement of Gross’s conjecture to be the narrow
ray class field of conductor fpn for some positive integer n. The Artin reciprocity map (2.1)
induces an isomorphism

recp : F×p /Ep(f)Up,n
∼= Gal(Ln/K), (2.3)

where Ep(f) denotes the group of totally positive p-units of F that are congruent to 1 modulo
f, and Up,n := 1 + pnOF,p is the group of p-adic units congruent to 1 modulo pn. Applying
the inverse of the map recp to equation (2.2), Conjecture 2.1 can be viewed as a formula for
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the image of uσT in F×p /Ep(f)Up,n, the left side of (2.3). (Here, uσT is viewed as an element of
F×p via uσT ∈ K ⊂ KP

∼= Fp.) To make this precise, we fix an ideal a 6∈ S ∪ T of F whose
associated Frobenius in Gal(K/F ) is equal to σ. Conjecture 2.1 then states that the image
of uσT in F×p satisfies

uσT ≡
∏

x∈F×p /Ep(f)Up,n

x−ζLn/F,S,T (σa·recp(x),0) (mod Ep(f)Up,n). (2.4)

Taking the limit as n→∞ gives a formula for the image of uσT in F×p /Êp(f), where the hat
denotes topological closure. One of the goals of this article is to remove the ambiguity of

Êp(f) inherent in Gross’s conjecture by giving an exact conjectural formula for uσT .
We should mention that we have not extracted the most information possible from Gross’s

conjecture in our analysis above, since the abelian extension L is allowed to have increased
ramification at all primes above S. Furthermore, the valuation at p of the p-unit uσT is

specified by Conjecture 1.2, so we can reduce the ambiguity of Êp(f) to one provided by its

subgroup Ê(f), where E(f) denotes the group of totally positive units of F congruent to 1
modulo f. These issues are discussed in [11, §3].

Furthermore, one can attempt to systematically increase knowledge about uσT using
Gross’s conjecture by judiciously adding primes to the set S in the manner of Taylor and
Wiles. This is discussed in [11, §5.4].

2.4 Gross’s “weak” conjecture in case TRp

Prior to stating Conjecture 2.1, Gross had stated another conjecture applicable in case TRp

[15]. This conjecture requires an additional assumption. Suppose that the finite place in S
splitting completely in K, denoted p, has characteristic p; we assume that S contains all the
primes of F above p.

Let W the denote the weight space of continuous group homomorphisms f : Z×p →
Z×p .1 The integers can be embedded as a dense subset of W by associating to k ∈ Z the
homomorphism x 7→ xk. For this reason, we write xs instead of s(x) for any s ∈ W . Note
also that W is naturally an abelian group.

There exists, by independent work of Deligne–Ribet [12], Cassou-Nogues [3], and Barksy
[2], for each σ ∈ G a p-adic meromorphic function

ζK/F,S,p(σ, s) :W −→ Qp (2.5)

such that
ζK/F,S,p(σ, n) = ζK/F,S(σ, n) ∈ Q (2.6)

1Write q = p if p is odd and q = 4 if p = 2. There is an isomorphism W ∼= (Z/qZ)× × (1 + pZp)× given
by f 7→ (f(ζ), f(1 + q)), where ζ is a primitive q-th root of unity in Z×p . Furthermore, (1 + pZp)× ∼= Zp via
the p-adic logarithm map. Therefore, W can be viewed as ϕ(q) copies of the p-adic space Zp. Note that our
weight spaceW is only a piece of the larger weight space of continuous group homomorphisms f : Z×p → C×p ;
however, our definition will suffice for our purposes.



22 CHAPTER 2. GROSS’S CONJECTURES

for integers n ≤ 0. The function ζS,p is regular away from s = 1, and has at most a simple
pole at s = 1; Colmez has shown that the existence of this pole at s = 1 is equivalent to the
Leopoldt conjecture for F [6].

Gross’s conjecture states that whereas the classical values ζ ′S,K/F (σ, 0) determine the p-

adic valuations of the units uσ, the p-adic zeta values ζ ′S,K/F,p(σ, 0) determine the p-adic

logarithms of the (norms of the) units uσ. To make this precise, we consider the branch
logp : Q×p −→ Zp of the p-adic logarithm for which logp(p) = 0. Next, fix a place P of K
above p, and consider the composition of the norm map from K×P to Q×p with logp:

logp ◦NormKP/Qp : K×P −→ Zp.

Via the canonical embeddings Up,S ⊂ K ⊂ KP, we may restrict the function logp ◦NormKP/Qp

to a homomorphism from the finitely generated abelian group Up,S to Zp, and extend by
scalars to a map

logp ◦NormKP/Qp : Up,S ⊗Q −→ Qp.

As demonstrated in Proposition 1.7, we may consider the image of uσ in Up,S ⊗ Q un-
conditionally. Gross’s conjecture from [15] then states:

Conjecture 2.2 (Gross, weak form). For each σ ∈ G we have

ζ ′K/F,S,p(σ, 0) = − logp NormKP/Qp(u
σ).

We call Conjecture 2.2 the “weak” Gross conjecture and Conjecture 2.1 the “strong”
Gross conjecture, since, as was known to Gross, Conjecture 2.1 implies Conjecture 2.2. See
[11] for a proof of this fact.

In [9], Conjecture 2.2 was proven under certain assumptions. If F is a real quadratic field
and K is a narrow ring class extension of F , then these assumptions hold automatically, and
hence the proof is unconditional.

We conclude this section with a T -smoothed version of Conjecture 2.2 for future reference.
Define T -smoothed p-adic ζ-functions ζK/F,S,T,p(σ, s) from the p-adic ζ-functions ζK/F,S,p(σ, s)
using the group ring equation (1.4), with s now an element of W . Conjecture 2.2 yields:

Conjecture 2.3 (Gross, weak form, T -smoothed). Assume Conjecture 1.2 with v = p and
w = P. For each σ ∈ G we have

ζ ′K/F,S,T,p(σ, 0) = − logp NormKP/Qp(u
σ
T ).



Chapter 3

Shintani’s method

In the 1970s, Shintani introduced a powerful technique for analyzing zeta functions associated
to number fields, allowing him to give new proofs that Hecke L-functions admit meromorphic
continuation and that values of L-functions of totally real fields at negative integers are
algebraic. His analysis is based on an ingenious generalization of Riemann’s first proof of
the meromorphic continuation of ζ(s). To emphasize this analogy, we recall some elements
of Riemann’s method.

3.1 Hurwitz zeta functions

The Riemann zeta function has the remarkable property that its values at nonpositive inte-
gers can be packaged into a simple generating function:

z

ez − 1
= 1 +

∞∑
n=1

(−1)nζ(1− n)

(n− 1)!
zn.

Equivalently, we have

ζ(1− n) = −Bn

n
(n ≥ 1),

where the Bernoulli numbers Bn are defined by the Taylor expansion

z

ez − 1
=
∞∑
n=0

Bn
zn

n!
.

This formula has many applications, in particular to p-adic interpolation of the values of ζ(s)
at negative integers. Shintani’s zeta functions form a very general class of zeta functions
sharing the property that their values at negative integers can be packaged into a nice
generating function. Before discussing Shintani’s zeta functions themselves, we consider the
important special case of Hurwitz zeta functions. The propeties of Hurwitz zeta functions
will be used in our analysis of general Shintani zeta functions.

23
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Let ξ ∈ R>0 let and α = (α1, . . . , αd) be a vector such that αi > 0 for all i. Define the
multiple Hurwitz zeta function by

ζ(α, ξ, s) =
∑
k∈Zd≥0

(ξ + 〈k, α〉)−s.

It is easy to see that the convergence behaviour of the series above is the same as that of the
Dirichlet series ∑

k∈Z>0

(k − 1 + · · ·+ kd)
−σ =

∞∑
n=1

sn,dn
−σ, (3.1)

where sn,d is the number of ways of writing n as a sum of d positive integers. We have the
trivial bound sn,d ≤ nd−1, from which it follows that the series (3.1), and hence that defining
ζ(α, ξ, s), converges absolutely for Re(s) > d. In fact, it will follow from our study that the
exponent d− 1 in our approximation of sn,d is optimal, i.e., sn,d 6= O(nd−1−ε) for any ε > 0.
(Exercise: Prove this using elementary methods.)

The analytic continuation of ζ(α, ξ, s) can be established using Riemann’s method. As
observed by Euler, the change of variable t→ ξ + 〈k, α〉 shows that

Γ(s)(ξ + 〈k, α〉)−s =

∫ ∞
0

e−(ξ+〈k,α〉)tts−1dt,

where

Γ(s) =

∫ ∞
0

e−tts−1dt, Re(s) > 0.

Therefore, for Re(s) > d we have

Γ(s)ζ(α, ξ, s) =
∑
k∈Zd≥0

∫ ∞
0

e−(ξ+〈k,α〉)tts−1dt

=

∫ ∞
0

e−ξt
∑
k∈Zd≥0

e−〈k,α〉tts−1dt

=

∫ ∞
0

e−ξt

(
d∏
i=1

∞∑
ki=0

e−αikit

)
ts−1dt

=

∫ ∞
0

e−ξt

(
d∏
i=1

eαit

eαit − 1

)
ts−1dt

For ε > 0, we let C(∞, ε) be the Hankel contour — the path that traces the real axis from
∞ to ε, circles the origin counterclockwise along |z| = ε, and then retraces the real axis from
ε to ∞. (See Figure 3.1.)

Suppose ε < 1
2
(2π/min{αi}). We choose the branch of log(z) such that 0 ≤ arg(z) < 2π.

Then the function

I(s) = I(α, ξ, s) :=

∫
C(∞,ε)

e−ξz

(
d∏
i=1

eαiz

eαiz − 1

)
zs−1dz (3.2)
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Figure 3.1: the Hankel contour

ε

defines an entire function on C so long as we agree that arg(z) = 0 on the portion of the
Hankel contour from z = +∞ to z = ε, and that arg(z) = 2π on the return trip from z = ε
to z = +∞. (Alternatively, we can view the integration as taking place on the universal
cover of C− {0}.) The function I(s) is independent of ε taken in the given range, because
the integrand in (3.2) is holomorphic in any annulus centered at the origin with radii given
by two such ε.

Moreover, we have

I(s) = (e2πis − 1)

∫ ∞
ε

e−ξt

(
d∏
i=1

eαit

eαit − 1

)
ts−1dt+

∫
|z|=ε

e−ξz

(
d∏
i=1

eαiz

eαiz − 1

)
zs−1dz.

If Re(s) > 1, then

lim
ε→0

∫
|z|=ε

e−ξz

(
d∏
i=1

eαiz

eαiz − 1

)
zs−1dz = 0.

Therefore, we have

ζ(α, ξ, s) = c1(s)I(s), c1(s) :=
1

Γ(s)(e2πis − 1)
(3.3)

for Re(s) > d. Since Z(s) is entire and Γ(s) admits a meromorphic continuation to C,
ζ(α, x, s) can be meromorphically continued as well, with polar set contained in Z.

Exercise 3.1. Show that ζ(α, ξ, s) has simple poles at s = 1, 2, . . . , d and is analytic at
integers n > d. Compute the residues at s = 1, 2, . . . , d. Conclude that the series defining
ζ(α, ξ, s) does not converge in the half-plane Re(s) > σ for any σ < d.
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3.2 The Hurwitz zeta functions at nonpositive integers

In this section, we derive formulas for ζ(ξ, α, 1− n), n ≥ 1, when ξ has the form ξ = 〈α, x〉
for some x ∈ Rn

≥0, x 6= 0.
It is a standard fact that

lim
s→−m

(s+m)Γ(s) =
(−1)m

m!

for nonnegative integers m. It follows that

lim
s→−m

1

Γ(s)(e2πis − 1)
=

(−1)mm!

2πi
.

Adapting (3.3), we have

ζ(α, 〈α, x〉, s) =
1

Γ(s)(e2πis − 1)

∫
C(∞,ε)

d∏
i=1

e(1−xi)αiz

eαiz − 1
zs−1dz. (3.4)

By the residue theorem, if n ≥ 1, then

ζ(α, 〈α, x〉, 1− n) =
(−1)n−1(n− 1)!

2πi
· 2πi res

z=0

(
d∏
i=1

e(1−xi)αiz

eαiz − 1
z−n

)

=
(−1)n−1(n− 1)!∏d

i=1 αi
coeff(F (z), n+ d− 1), (3.5)

where

F (z) =
d∏
i=1

αize
(1−xi)αiz

eαiz − 1
.

The Taylor coefficients of F (z) are essentially values of the Bernoulli polynomials, defined
by the expansion

zexz

ez − 1
=
∞∑
n=0

Bn(x)
zn

n!
.

We have the identity of power series

F (z) =
d∏
i=1

∞∑
n=0

Bn(1− xi)αni
n!

zn. (3.6)

Combining (3.5) and (3.6), we obtain a useful formula for ζ(α, 〈α, x〉, 0):

ζ(α, 〈α, x〉, 0) = (−1)d
∑

r1+···+rd=d
rj∈Z≥0

d∏
j=1

α
rj−1
j

rj!
Brj(xj). (3.7)

Here we have used the fact that Br(1 − x) = (−1)rBr(x). Since the Bernoulli polynomials
have rational coefficients, we have established the following result:

Proposition 3.2. The values ζ(x, α, 1− n), n ≥ 1, belong to the field Q({xi}, {αi}).
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3.2.1 The multiple Γ-function

Finally, recall the classical Hurwitz zeta function ζH(x, s) discussed in §1.1. The Lerch
formula relates the derivative of ζH(x, s) at s = 0 to the Γ-function:

∂

∂s
ζH(x, s)

∣∣
s=0

= log

(
Γ(x)√

2π

)
.

Motivated by this formula, we define the multiple Γ-function Γ(x, α) by

log Γ(α, ξ) =
∂

∂s
ζ(α, ξ, s)

∣∣
s=0

.

Note that
Γ(x) =

√
2πΓ(x, 1).

The multiple log-Γ-function admits meromorphic continuation in ξ to C. To see this, we
differentiate (3.2) under the integral sign to obtain

I ′(α, ξ, 0) =

∫
C(∞,ε)

e−ξz

(
d∏
i=1

eαiz

eαiz − 1

)
log(z)

dz

z
. (3.8)

Combined with (3.3), this yields

log Γ(α, ξ) = c′1(0)I(α, ξ, 0) + c1(0)

∫
C(∞,ε)

e−ξz

(
d∏
i=1

eαiz

eαiz − 1

)
log(z)

dz

z
. (3.9)

The function I(α, ξ, 0) is meromorphic in ξ, as is the function defined by the integral on the
right. The meromorphic continuability of log Γ(α, ξ) follows.

3.3 Shintani zeta functions

Shintani axiomatized and enlarged the class of functions whose meromorphic continuation
can be established using the techniques of the previous subsection plus an ingenious change
of variable. Let a = (aji ) ∈ Mn×d(C) such that Re(aji ) > 0 for all i, j and let x ∈ Rd

≥0 be a
nonzero column vector. We write ai and aj i-th row and the j-th column of a, respectively.
Define the Shintani zeta function

ζ(a, x, s) =
∑
k∈Zd≥0

N
(
a(x+ k)

)−s
(Re(s) > d/n), (3.10)

where x and k are viewed as column vectors, and the “norm” Nv of a vector v ∈ Rn is
defined to be

Nv = v1 · · · vn.

Remark 3.3. If F is a number field of degree n and x 7→ xi are the embeddings of F into
C, then Nx = NF/Q(x).
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The multiple Hurwitz zeta function is simply the special case n = 1 of the Shintani zeta
function.

The convergence of the series (3.10) is governed by that of∑
k∈Z>0

(k1 + · · ·+ kd)
−nσ.

By the discussion of the previous section, this series converges absolutely when nσ > d, or
equivalently, when σ > d/n.

By Euler’s trick, we obtain∫ ∞
0

e−ai(x+k)tits−1
i dti = Γ(s)(ai(x+ k))−s. (3.11)

We write t for the row vector (t1, . . . , tn) and ts−1dt for (t1 · · · tn)s−1dt1 · · · dtn. Taking the
product of (3.11) over i = 1, . . . , n, we are led to

Γ(s)n N
(
a(x+ k)

)−s
=

∫
(0,∞)n

e−ta(x+k)ts−1dt

=

∫
(0,∞)n

e−taxe−takts−1dt.

Summing over k, we have

Γ(s)nζ(a, x, s) =

∫
(0,∞)n

e−tax
∑
k∈Zm≥0

e−takts−1dt.

Noting the geometric series

∑
k∈Zd≥0

e−tak =
d∏
j=1

1

1− e−taj
=

d∏
j=1

eta
j

etaj − 1
,

we have

Γ(s)nζ(a, x, s) =

∫
(0,∞)n

G(t)ts−1dt,

where

G(t) = e−tax
d∏
j=1

eta
j

etaj − 1
=

d∏
j=1

eta
j(1−xj)

etaj − 1
. (3.12)

It is tempting to attempt to adapt Riemann’s Hankel contour method for obtaining
a meromorphic continuation of ζ(a, x, s) to the complex plane. Unfortunately, a direct
application of the method fails: the hyperplane (aj)⊥ ⊂ Cn has positive dimension if n > 1,
and thus interects any polydisk centred at 0 ∈ Cn. Therefore, G(t) will have a singularity
along C(∞, ε1)×· · ·×C(∞, εn) for all choices of εi > 0. Shintani circumvented these analytic
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difficulties by decomposing the domain Rn
>0 of integration and applying a change of variable.

We describe his method. Set

Dk = {(t1, . . . , tn) ∈ Rn
>0 : tj ≤ tk for all j},

and

zk(a, x, s) = Γ(s)−n
∫
Dk

G(t)ts−1dt. (3.13)

We have

Rn
>0 =

n∐
k=1

Dk and ζ(a, x, s) =
n∑
k=1

zk(a, x, s). (3.14)

Consider the change of variable

t = uy = u(y1, . . . , yn), t ∈ Dk,

where u = tk > 0. Since t ∈ Dk, we have 0 ≤ yj ≤ 1 for all j and yk = 1. Substituting
in (3.14), we have

zk(x, a, s) = Γ(s)−n
∫

(0,∞)

uns−1

{∫
(0,1)n−1

G(uy)ŷs−1dŷ

}
du, (3.15)

where we have written

y = (y1, . . . , yk−1, 1, yk+1, . . . , yn) ∈ Rn, ŷ = (y1, . . . , yk−1, yk+1, . . . , yn) ∈ Rn−1,

and
ŷs−1dŷ :=

∏
j 6=k

ys−1
j dyj.

Set

cn(s) =
1

(e2πins − 1)(e2πis − 1)n−1Γ(s)n
(3.16)

and let C(1, ε) be the subcontour of C(∞, ε) that starts and ends at z = 1 instead of at
z = +∞.

Proposition 3.4. For sufficiently small ε, we have

zk(a, x, s) = cn(s)

∫
C(∞,ε)

uns−1

{∫
C(1,ε)n−1

G(uy)ŷs−1dŷ

}
du. (3.17)

The iterated line integral on the right is absolutely convergent and defines a meromorphic
function of s that is independent of ε, provided ε is sufficiently small.

Proof. Set

Ik,ε(s) = Ik,ε(a, x, s) =

∫
C(∞,ε)

uns−1

{∫
C(1,ε)n−1

G(uy)ŷs−1dŷ

}
du. (3.18)



30 CHAPTER 3. SHINTANI’S METHOD

First we verify that, for sufficiently small epsilon, the integrand has no singularities along
C(∞, ε) × C(1, ε)n−1. We must show that, for ε sufficiently small, uyaj is not an integer
multiple of 2πi. By the Cauchy-Schwartz inequality, we can find ε1 > 0 such that

|uyaj| ≤ ‖uy‖ · ‖aj‖ < 1 (j = 1, . . . , d),

whenever |u| < ε1. On the other hand,

lim
ŷ→0

yaj = ajk.

Therefore, we may find ε2 > 0 such that

Re(yaj) >
1

2
min{Re(aji ) : i = 1, . . . , n} > 0, j = 1, . . . , d,

whenever |yi| < ε2 for all i 6= k. (This is where we use our assumption that the entries of a
have positive real part.) In particular, yaj is nonzero for these y. Letting ε0 = min{ε1, ε2},
we have 0 < |uyaj| < 1 whenever |u| < ε1 and |yi| < ε1 for all i 6= k. Thus, uyaj is not
a multiple of 2πi for these u, y, and the holomorphy of Ik,ε(s) follows. Cauchy’s theorem
implies that Ik,ε(s) is independent of ε for ε < ε0. Therefore, we may denote this function
simply by Ik(s) = Ik(a, x, s).

Let ε < ε0. By arguments similar to those of the previous section,

Ik(s) =

∫
|u|=ε

uns−1


∫
|yi|=ε
i 6=k

G(uy)ŷs−1dŷ

 du+

(e2πins − 1)(e2πis − 1)n−1

∫
(ε,∞)

uns−1

{∫
(ε,1)n−1

G(uy)ŷs−1dŷ

}
du.

If s > d/n, then a trivial estimate shows that

lim
ε→0

∫
|u|=ε

uns−1


∫
|yi|=ε
i 6=k

G(uy)ŷs−1dŷ

 du = 0.

Therefore,

Ik(s) = (e2πins − 1)(e2πis − 1)n−1

∫
(0,∞)

uns−1

{∫
(0,1)n−1

G(uy)ys−1dy

}
du

= (e2πins − 1)(e2πis − 1)n−1Γ(s)nzk(a, x, s)

= cn(s)−1zk(a, x, s).

Exercise 3.5. Find the poles of ζ(a, x, s), their orders, and their residues.

Exercise 3.6. Show how to define and meromorphically continue the more general Shintani
zeta function

ζ(a, x, (s1, . . . , sn)) =
∑
k∈Zd≥0

n∏
i=1

(ai(x+ k))−si .
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3.4 Special values of Shintani zeta functions

In this section, we give Shintani’s formulas for the values of ζ(a, x, s) when s is a nonpositive
integer. We first consider the special case s = 0, particularly important from the point of
view of Stark’s conjecture. The residue of Γ(s) at s = 0 is 1, and hence

lim
s→0

cn(s) =
1

n(2πi)n
, cn(s) :=

1

(e2πins − 1)(e2πis − 1)n−1Γ(s)n
.

Therefore, (3.17) becomes

zk(a, x, 0) =
1

n(2πi)n
Ik(0) =

1

n(2πi)n

∫
C(∞,ε)

u−1

{∫
C(1,ε)n−1

G(uy)ŷ−1dŷ

}
du.

Observe that G(uy) is holomorphic in the variables yi, i 6= k. Therefore, by the residue
theorem, ∫

C(1,ε)n−1

G(uy)
∏
i 6=k

dyi
yi

= G(0, . . . , 0, u, 0, . . . , 0)

= (2πi)n−1

d∏
j=1

e(1−xj)ajku

ea
j
ku − 1

. (3.19)

Thus, by (3.4) and (3.7),

zk(a, x, 0) =
1

n(2πi)

∫
C(∞,ε)

d∏
j=1

e(1−xj)ajku

ea
j
ku − 1

du

u

=
1

n
ζ(ak, 〈ak, x〉, 0) (3.20)

=
(−1)d

n

∑
`∈Zd≥0

`1+···+`d=d

d∏
j=1

B`j(xj)
(ajk)

`j−1

`j!
. (3.21)

Proposition 3.7. We have:

ζ(a, x, 0) =
(−1)d

n

n∑
k=1

∑
`∈Zd≥0

`1+···+`d=d

d∏
j=1

B`j(xj)
(ajk)

`j−1

`j!
. (3.22)

Corollary 3.8. The value ζ(a, x, 0) belongs to the field generated by the components of x
and the entries of a.

We record the n = d = 2 case of this formula for later use. Writing

w =

(
w1

w2

)
, a =

(
p q
r s

)
,

we have

ζ(a, w, 0) =
1

4

{(
p

q
+
r

s

)
B2(w1) + 4B1(w1)B2(w2) +

(
q

p
+
s

r

)
B2(w2)

}
. (3.23)
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3.4.1 Generalized Bernoulli polynomials

To evaluate ζ(a, x, 1 − n) for n ≥ 1, we define generalized Bernoulli polynomials Bk,m(a, x)
by

Bk,m(a,1− x)

(m!)n
= coeff

(
G(uy), (uny1 · · · yk−1yk+1 · · · yn)m−1

)
, (3.24)

where 1 is the vector (1, . . . , 1).

Theorem 3.9 ([26, Proposition 1]). Let m ≥ 1 be an integer. Then

ζ(a, x, 1−m) =
(−1)n(m−1)

n

n∑
k=1

Bk,m(a,1− x)

mn
.

Proof. Applying the residue theorem a total of n times, we have

Ik,ε(1−m) =

∫
C(∞,ε)

un(1−m)−1

{∫
C(1,ε)n−1

G(uy)ŷ−mdŷ

}
du

= 2πi coeff((2πi)n−1 coeff(G(uy), ŷm−1), un(m−1))

= (2πi)n
Bk,m(a,1− x)

(m!)n
.

Since

lim
s→1−m

(e2πins − 1)(e2πis − 1)n−1Γ(s)n = n

(
(−1)m−12πi

(m− 1)!

)n
we conclude using Proposition 3.4 that

zk(a, x, 1−m) =
(−1)n(m−1)

n

Bk,m(1− x)

mn
.

The desired result follows from (3.14).

Exercise 3.10. Express the generalized Bernoulli polynomial Bk,m(a, x) in terms of the
standard Bernoulli polynomials Bk.

Corollary 3.11. The value ζ(a, x, 1 −m) belongs to the field generated by the components
of x and the entries of a.

3.4.2 An algebraic version of Shintani’s formula

Recall that the singularity of

G(t) =
d∏
j=1

e(1−xi)taj

etaj − 1
.
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at t = 0 is not isolated, implying that G(t) does not have a convergent Laurent expansion
in any punctured neighbourhood of t = 0. Nevertheless, for j = 1, . . . , d, we may define

Gj(t) =


taj

etaj − 1
if taj 6= 0,

1, otherwise.

The functions Gj(t) are holomorphic at t = 0 and thus have convergent Taylor expansions

Gj(t) ∈ C[[t]] := C[[t1, . . . , tn]].

Since
∏d

j=1 ta
j ∈ C[t] ⊂ C[[t]], we may identify G(t) as a quotient

G(t) =
d∏
j=1

Gj(t)e(1−xi)taj

taj
∈ C((t)),

where C((t)) denotes the field of fractions of C[[t]]. Caution is required when working
with the field C((t)) because, unless n = 1, its elements are not simply formal sums of
monomials tm, m ∈ Zn. In particular, it does not make sense to talk about the coefficient
of tm appearing in a general element of C((t)) when n > 1. However, we make the following
trivial observation:

Lemma 3.12. Let h(t) ∈ C[t] be a homogeneous polynomial of degree r such that

coeff(h(t), trk) 6= 0,

let g(t) ∈ C[[t]], and let f(t) = g(t)/h(t). Then

f(tk(t1, . . . , tk−1, 1, tk+1, . . . tn)) ∈ t−rk C[[t]].

If f(t) is as in the lemma, then the expression

coeff(f(tk(t1, . . . , tk−1, 1, tk+1, . . . tn)), tm) (3.25)

is well defined for all t ∈ Zn. Now, G(t) has the property of Lemma 3.12 with h(t) =
∏d

j=1 ta
j

(recall that each aji has positive real part and in particular is non-zero). Therefore it makes
sense to discuss the coefficients (3.25) for the algebraic object G(t) ∈ C((t)); these coefficients
encode the values of ζ(a, x, s) at nonpositive integers, as described in the following corollary.

Corollary 3.13. Let m be a nonnegative integer. Then

ζ(a, x,−m) = ∆(m)G :=
((−1)mm!)n

n
×

n∑
k=1

coeff (G(tk(t1, . . . , tk−1, 1, tk, . . . , tn)), (t1 · · · tk−1t
n
ktk+1 · · · tn)m) .
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3.5 Derivatives of Shintani zeta functions at s = 0

Recall that by Proposition 3.4, we have

zk(a, x, s) = cn(s)Ik(a, x, s).

(These functions were defined in (3.13), (3.16), and (3.18).) Therefore,

z′k(a, x, 0) = c′n(0)Ik(a, x, 0) + cn(0)I ′k(a, x, 0)

= c′n(0)(2πi)n−1I(ak, 〈ak, x〉, 0) + cn(0)I ′k(a, x, 0), (3.26)

Differentiating under the integral sign,

I ′k(a, x, 0) = n

∫
C(∞,ε)

log(u)

{∫
C(1,ε)n−1

G(uy)
dŷ

ŷ

}
du

u
(3.27)

+ cn(0)−1
∑
i 6=k

δk,i(a, x) (3.28)

where

δk,i(a, x) = cn(0)

∫
C(∞,ε)

∫
C(1,ε)n−1

G(uy) log(yi)
dŷ

ŷ

du

u
(i 6= k).

By (3.19), the term from (3.27) may be written

n(2πi)n−1

∫
C(∞,ε)

log(u)
d∏
j=1

e(1−xj)ajku

ea
j
ku − 1

du

u

=
n(2πi)n−1

c1(0)
(log Γ(ak, 〈ak, x〉)− c′1(0)I(ak, 〈ak, x〉, 0)) , (3.29)

Here (3.29) follows from (3.9).
Combining (3.26)–(3.29) and applying the identities

cn(0)n(2πi)n−1 = c1(0), c′n(0)(2πi)n−1 = c′1(0),

we see that
z′k(a, x, 0) = log Γ(ak, 〈ak, x〉) +

∑
i 6=k

δk,i(a, x). (3.30)

The terms δk,i(a, x) can be evaluated in “elementary” terms:

δk,i(a, x) =
(−1)d

n

d∑
j=1

∑
`∈Zd≥0

`1+···+`d=d
`j=0

(log(ajk)− log(ajk + aji ))
∏
r 6=j

B`r(xr)

`r!

(
ark
ajk
− ari
aji

)`r−1

. (3.31)

Note that for all i, j, k,

∏
r 6=k

(
ark
ajk
− ari
aji

)`r−1

= −
∏
r 6=k

(
ari
aji
− ark
ajk

)`r−1

.
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Therefore,
n∑
k=1

∑
i 6=k

δk,i(a, x) =
n∑
k=1

δk(a, x),

where

δk(a, x) =
(−1)d

n

d∑
j=1

∑
`∈Zd≥0

`1+···+`d=d
`j=0

log(ajk)
∏
r 6=j

B`r(xr)

`r!

(
ark
ajk
− ari
aji

)`r−1

, (3.32)

and we have
z′k(a, x, 0) = Γ(ak, 〈ak, x〉, 0) + δk(a, x).

Combining with (3.14), we obtain

ζ ′(a, x, 0) =
n∑
k=1

(
Γ(ak, 〈ak, x〉, 0) + δk(a, x)

)
. (3.33)

This formula will be used in the construction of Stark units in the ATR case.

3.5.1 The multiple sine function

Suppose now that, in addition to previously imposed hypotheses, we have 0 ≤ Re(xj) ≤ 1
and 1− Re(x) 6= 0, where 1 = (1, . . . , 1) ∈ Rd. Define

ζ+(a, x, s) = −ζ(a, x, s) + (−1)dζ(a,1− x, s).

By 3.7 and the identity
B`(t) = (−1)`B`(1− t), (3.34)

we have
ζ+(a, x, 0) = 0.

Thus, it is very natural to consider the derivative of ζ+(a, x, s) at s = 0. We define the
Shintani sine function by

S(x, a) = exp

(
d

ds
ζ+(x,A, s)

∣∣∣∣∣
s=0

)
.

Applying (3.34) again, we see that

δk(a, x) + (−1)dδk(a,1− x) = 0.

Therefore,

S(a, x) = (ζ+)′(a, x, 0) =
n∑
k=1

(ζ+)′(ak, 〈ak, x〉, 0) =
n∑
k=0

S(ak, 〈x, ak〉).

We will apply this formula later to our study of Stark’s conjecture in the TR∞ case.
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3.6 Partial zeta functions

Let F be a number field of degree n with ring of integers OF . Let x 7→ xi, i = 1, . . . , r1

be the real embeddings of F and let x 7→ xi, i = r1 + 1, . . . , r1 + 2r2 = n, be its complex
embeddings. We have

NF/Q(x) =
n∏
i=1

xi. (3.35)

Fix an ideal f and write

E(f) = {x ∈ O×F : x > 0, x ≡ 1 (mod f)},

where x > 0 is shorthand for xi > 0, i = 1, . . . , r1. Let a = {a1, . . . , ad} be a set of Q-linearly
independent elements of F>0. We define the cone c(a) spanned by a to be

c(a) =

{
d∑
i=1

xjaj : xj ∈ Q>0 for all i

}
.

The number d is called the dimension of c and will be denoted d(c).

Theorem 3.14 ([26, Proposition 4]). There exists a finite set C of pairwise disjoint cones
such that:

1. F>0 =
⊔

ε∈E(f)

εD, where D =
⊔
c∈C c. Thus, D is a fundamental domain for the action

of E(f) on F>0.

2. For every c ∈ C there is a set {uc,i : r1 + 1 ≤ i ≤ n} ⊂ C, |uc,i| = 1, such that:

(a) Re(uc,ia
j
i ) > 0 for i = r1 + 1, . . . , n, j = 1, . . . , d(c).

(b) If x 7→ xi and x 7→ xi′ are complex conjugate embeddings of F into C, then
uc,i = ūc,i′.

In particular, uc,r1+1 · · ·uc,n = 1.

The set C will be called a Shintani fan.

Example 3.15. Let F = Q(ω), ω = 1
2
(1 +

√
−3). Then

D = c(1) t c(1, ω)

is a fundamental domain for the action of O×F on F×.

Example 3.16. Let F be a real quadratic field. Let ε be a generator of E(f). Then

D = c(1) t c(1, ε)

is a fundamental domain for the action of E(f) on F>0.
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Let f be an integral ideal of F . Let K = Kf be the narrow ray class field of F associated
to the conductor f and let S be the set consisting of the infinite primes of F together with
the primes dividing f. Let σ ∈ Gal(K/F ) and select an ideal a ⊂ OF , (a, S) = 1, such that
the image of a under the Artin map is σ. It is easy to check that

(1 + fa−1) ∩ D −→ {x ∈ 1 + fa−1 : x > 0}/E(f)

is a bijection. We have

ζK/F,S(σ, s) =
∑
b⊂OF

(b,S)=1,σb=σa

Nb−s

= Na−s
∑

α∈1+a−1f, α>0
α mod E(f)

Nα−s (3.36)

= Na−s
∑
c∈C

ζ(a, c, s), (3.37)

where C is a Shintani fan and

ζ(a, c, s) :=
∑

α∈(1+a−1f)∩c

Nα−s.

Here (3.36) uses the change of variables (α) = ba−1. Let c be a cone in C.

Lemma 3.17. There is a unique Q-linearly independent subset {a1, . . . , ad(c)} of a−1f such
that c = c(a) and such that aj /∈ ka−1f for all integers k > 1 and all j.

To this set of generators of c, we associate the parallelipiped

P = Pc =


d(c)∑
i=1

xjaj : 0 < xj ≤ 1 for all j

 .

Lemma 3.18. Every y ∈ (1 + a−1f) ∩ c can be expressed uniquely in the form

y = x+ k1a1 + · · ·+ kd(c)ad(c)

for some x ∈ Pc and k ∈ Z
d(c)
≥0 .

Let a = ac be the n × d(c) matrix whose (i, j)-th entry is aji (i.e. the ith archimedean
embedding of the element aj ∈ F ) and define

u = uc = diag(1, . . . , 1︸ ︷︷ ︸
r1

, uc,r1+1, . . . , uc,n). (3.38)

We call u a rotation matrix for c. Then the Shintani zeta function ζ(ua, x, s) is defined for
all x ∈ (1 + a−1f) ∩ P and, by Lemma 3.18, we have

ζ(a, c, s) =
∑

x∈(1+a−1f)∩Pc

ζ(ucac, [x], s), (3.39)
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where [x] ∈ Qd
≥0 is the coefficient vector of x with respect to the columns of ac, i.e. such that

x =
∑d(c)

j=1[x]ja
j. In (3.39), we have used the fact that uc,r1+1 · · ·un = 1 along with (3.35). It

follows that

ζK/F,S(σ, s) = Na−s
∑
c∈C

∑
x∈(1+a−1f)∩Pc

ζ(ucac, [x], s) (3.40)

= Na−s
∑
c∈C

∑
x∈(1+a−1f)∩Pc

n∑
k=1

zk(ucac, [x], s). (3.41)

Corollary 3.19. The partial zeta function ζK/F,S(σ, s) admits a meromorphic continuation
to the whole complex plane and takes on rational values at nonpositive integral arguments.

Exercise 3.20. Suppose F has at least one complex place and |S| ≥ 2. Show that ζS(σ, n) = 0
for n < 0. Hint: Think about the gamma factors in the functional equation.

3.7 Shintani decompositions of partial zeta functions

We can use the decomposition of Shintani zeta functions in (3.14) to decompose ζS(σ, s).
Define

zk(a, C, {uc}, s) =
∑
c∈C

∑
x∈(1+a−1f)∩Pc

zk(ucac, [x], s), (3.42)

where [x] ∈ Qd
≥0 is the coordinate vector of x with respect to the columns of ac. As we shall

see, the existence of this decomposition is the key to all the conjectural, archimedean Stark
unit constructions based on Shintani-type methods. To obtain well-defined candidates for
Stark units, we must analyze the dependence of zk(a, C, {uc}, 0) and z′k(a, C, {uc}, 0) on the
choices of a, C and {uc}.

3.7.1 Dependence on rotation matrices

Proposition 3.21. Suppose u and v are diagonal matrices such that all the entries of au
and av have positive real part.

1. We have ζ(ua, x, 0) = ζ(va, x, 0). More precisely,

ζ(ua, x, 0) =
(−1)d

n

n∑
k=1

∑
`∈Zd≥0

`1+···`d=d

d∏
j=1

B`j(xj)

`j!
(ajk)

`j−1.

2. Suppose that a = ac and u = uc where c = c(a1, . . . , ad) is a cone in F>0 and that
x ∈ Q2

≥0, x 6= 0. Then

ζ(ua, x, 0) = TrF/Q

(−1)d

n

∑
`∈Zd≥0

`1+···`d=d

d∏
j=1

B`j(xj)

`j!
(aj)`i−1

 ∈ Q.
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3. Let vc be another rotation matrix for c and let N be a positive integer such that
ζ(x, ua, 0) ∈ 1

N
Z. Then

z′k(ua, x, 0)− ζ(a, x, 0) log(uk) ≡ z′k(va, x, 0)− ζ(0, a, x) log(vk) (mod 2πi
N

Z)

for k = 1, . . . , n.

Remark 3.22. The formula for ζ(ua, x, 0) in 1. is the same as that appearing in (3.22).
Thus, rotation matrices have no effect on the values of Shintani zeta functions at s = 0.

Proof. The deduction of 1. and 2. from previous results is left as an exercise for the reader.
For a proof of 3., see [20, Proposition 2] case v = 1.

Setting

ϕk(a, u, x) = z′k(ua, x, 0)− ζ(ua, x, 0) log(uk),

Φk(a, C, {uc}) =
∑
c∈C

∑
xc∈(1+a−1f)∩Pc

ϕk(ac, uc, xc)

we have shown that the cosets ϕk(a, u, x)+ 2πi
N

Z and Φk(a, C, {uc})+ 2πi
N

Z are independent of
the rotation matrix u. Since rotations corresponding to conjugate embeddings are conjugate,
we obtain from (3.41):

n∑
k=1

Φk(a, C, {uc}) ≡ ζ ′S(σa, 0) (mod 2πi
N

Z) (3.43)

when ζK/F,S(σa, 0) = 0. This decomposition of ζ ′S(σa, 0) is the key to the refinement of Stark’s
conjecture in the ATR case.

3.7.2 Dependence on the cover

We say that (C ′, {uc′}) is a refinement or simplicial subdivision of (C, {uc}) if

1. C ′ can be partitioned into subsets C ′c, c ∈ C, such that each c is the disjoint union of
the simplicial cones c′ ∈ C ′c;

2. For each c′ ∈ C ′c, we have uc′ = uc.

Proposition 3.23.

1. The quantity Φk(a, C, {uc}) is invariant under refinement of C.

2. Let (C, {uc}) and (D, {ud}) be as in Theorem 3.14. Then there an unit η ∈ E(f) such
that

Φk(a,D, {ud}) ≡ Φk(a, C, {uc})−
1

N
log ηk (mod 2πi

N
Z).
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Remark 3.24. The proof of statement 1. is the technical heart of the paper [20].

Proof. Let c be a simplicial, let a = ac be its matrix of generators, and let u = uc be an
associated rotation matrix. To show that

ϕk(a, u, x) = z′k(ua, x, 0) + ζ(ua, x, 0) log(uk)

= log Γ(uak, 〈uak, x〉) + δk(ua, x) + ζ(ua, x, 0) log(uk)

is invariant under simplicial subdivision, we consider its three constituents separately. To
show that log Γ(uak, 〈uak, x〉) and ζ(ua, x, 0) are invariant under simplicial subdivision of c
is a routine exercise. Showing that δk(ua, x) is similarly invariant is hard, technical work.
We refer the reader to [20, Lemma 1] for details.

We prove 2. As
⋃
C and

⋃
D may be different fundamental domains for the action of

E(f) on F>0, there need be no common refinement. However, by 1., we may assume the
following property is satisfied: For each c ∈ C there is a unique unit ηc ∈ E(f), such that
cηc ∈ D. Since

⋃
C and

⋃
D are both fundamental domains for the action of E(f) on F>0,

we must have D = {cηc : c ∈ C}.
Set

δc = diag(η(1)
c , . . . , η(n)

c ), vc = ucδ
−1
c .

Noting that acηc = δcac, we see that the entries of the matrices vcacηc = ucac have positive
real parts. We have:

ϕk(acηc , vc, x) = ϕk(δcac, ucδ
−1
c , x)

≡ ϕk(ac, uc, x)− ζ(ucac, x, 0) log η(k)
c (mod 2πi

N
Z)

by statement 3. of Proposition 3.21. Since ηc ≡ 1 (mod f), we have

(1 + a−1f) ∩ Pcηc = ((1 + a−1f) ∩ Pc)ηc.

Therefore,

Φk(a,D, {vc}) ≡ Φk(a, C, {uc})−
∑
c∈C

∑
(1+a−1f)∩Pcηc

ζ(ucac, x, 0) log(η(k)
c ) (mod 2πi

N
Z).

For each c and x, let
t(c, x) = Nζ(ucac, x, 0) ∈ Z.

Then ∑
c∈C

∑
(1+a−1f)∩Pcηc

ζ(ucac, x, 0) log(η(k)
c ) =

1

N
log η(k),

where
η :=

∏
c∈E

∏
(1+a−1f)∩Pcηc

ηt(c,x)
c ,

and we have

Φk(a,D, {vc}) ≡ Φk(a, C, {uc})−
1

N
log η(k) (mod 2πi

N
Z).

This proves 2., completing the proof.
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3.7.3 Dependence on representative ideal

Proposition 3.25. Let µ be a totally positive element of F such that µ ≡ 1 (mod f). Then

Φk(µa, C, {uc}) ≡ Φk(a, C, {uc}) (mod 2πi
N

Z).

Proof. Since µ ≡ 1 (mod f), we have 1 + (µa)−1f = µ−1(1 + a−1f). Therefore,

(1 + (µa)−1f) ∩ Pc = µ−1
(
(1 + a−1f) ∩ Pµc

)
for all c ∈ C. Consequently,∑

x∈(1+(µa)−1f)∩Pc

∑
k∈Zd≥0

N(a(x+ k))−s =
∑

x∈(1+a−1f)∩Pµc

∑
k∈Zd≥0

N(a(µ−1x+ k))−s.

3.8 Kronecker’s limit formula and Shintani zeta func-

tions

Let τ ∈ H and let z = a1 + a2τ . The Siegel function is defined by

ga(τ) = −q
1
2
B2(a2)

τ eπia1(a2−1)(1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z )

where qz = e2πiz and qτ = e2πiτ , and B2(x) = x2−x+1/6 is the second Bernoulli polynomial.
Suppose a1, a2 ∈ 1

N
Z. Define

fa(τ) = ga(τ)12N .

Theorem 3.26. The function fa only depends on the coset a + Z2. It is a holomorphic
modular form of weight 0 for Γ(N) with no zeros or poles on H. The functions fa, a ∈ 1

N
Z/Z,

generate the field function field Q(ζN)(X(N)).

Let F be an imaginary quadratic field and let f ⊂ OF be an ideal, f 6= (1). Let S consist
of the infinite prime of F together with the primes dividing f. Write Kf for the ray class
field of F of conductor f, let σ ∈ Gal(Kf/F ), and let a ⊂ OF be an ideal, (a, f) = 1, such
that the image of a under the Artin map is σ. Suppose

a−1f = Zω1 + Zω2 = ω1(Z + Zτ), τ := ω2/ω1 ∈ H.

Let f be the smallest positive integer in f. Then 1 ∈ (fa)−1f, so there is a pair a ∈ ( 1
f
Z/Z)2

such that 1 = a1ω1 + a2ω2. Define the elliptic unit

u(σ, f) = fa(τ) = ga(τ)12f .

Theorem 3.27.

1. The quantity u(σ, f) depends only on σ and not on our choice of a or on the subsequent
choices of τ and a.
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2. If f has at least two distinct prime factors, then u(σ, f) is a unit in OKf
.

3. The Shimura reciprocity law holds:

u(σ, f)τ = u(στ, f) (σ, τ ∈ Gal(Kf/F )).

Thus, the Siegel functions allow us to construct units in ray class fields of imaginary
quadratic fields; in fact, they are (up to a power) the Stark units. This fact follows from a
formula of Kronecker that we will now describe. For ω = (ω1, ω2), τ , and z as above, and
define

Z(z, ω, s) =
∑
m,n

N(z +mω1 + nω2)−s

= |ω1|−s
∑
m,n

N(z/ω1 +m+ nτ)−s

Note that Z(z, ω, s) depends only on the coset z+Zω1 +Zω2, and that the N(z+mω1 +nω2)
does not vanish for m,n ∈ Z so long as z /∈ Zω1 + Zω2. In particular, every term in the
above sum is well-defined if z = x1ω1 + x2ω2 and not both x1 and x2 are integral.

Theorem 3.28 (Kronecker’s second limit formula). Suppose a1 and a2 are not both integral.
Then Z(a1ω1 + a2ω2, ω, s) vanishes at s = 0 and

Z ′(a1ω1 + a2ω2, ω, s) = − log |ga(τ)|2. (3.44)

Let σ, τ , and a be as above and let w = |E(f)|. As Zω1 + Zω2 + 1 = 1 + a−1f, we have

Na−s · Z(1, ω, s) = wζK/F,S(σ, s). (3.45)

Corollary 3.29. We have:

ζ ′K/F,S(σ, 0) = − 1

12fw
log |fa(τ)|2 = − 1

12fw
log |u(σ, f)|2 (3.46)

Stark proved in [32] that u(σ, f) ∈ Uv,S. In fact, he proved that the number e of roots of
unity in K divides 12fw, and that u(σ, f) is the (12fw/e)-th power of an element u(σ) ∈ Uv,S.
Furthermore, these roots are compatible in the sense that u(σ) = u(1)σ. Finally, he proved
that u(σ)1/e = ga(τ)1/w generates an abelian extension of F . Combining these results with
Corollary 3.29, Stark obtained a proof of his rank one abelian Conjecture 1.1 in the case of
quadratic imaginary fields F .

Let us now use (3.44) as inspiration for how we may “get inside the absolute value” in the
statement of Stark’s conjecture. We view (3.44) as a decomposition of Z ′(a1ω1 + a2ω2, ω, 0):

Z ′(a1ω1 + a2ω2, ω, 0) = −(log ga(τ)1 + log ga(τ)2) (3.47)
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into two components corresponding to the embeddings x 7→ xi, i = 1, 2, of F into C. We have
seen such decompositions already, namely (3.43) in the context of Shintani zeta functions.
These phenomena are related: Note that we may write

Z(z, ω, s) =
∑

m∈Z2
≥0

N(z +m1ω1 +m2ω2)−s

+
∑

m∈Z2
≥0

N(z + (−1−m1)ω1 +m2ω2)−s

+
∑

m∈Z2
≥0

N(z +m1ω1 + (−1−m2)ω2)−s

+
∑

m∈Z2
≥0

N(z + (−1−m1)ω1 + (−1−m2)ω2)−s. (3.48)

Assume that E(f) = {1}. Then the above decomposition of Z(z, ω, s) corresponds to an
expression of Z(s, ω, s) as a combination of Shintani zeta functions. By (3.48), z /∈ Zω1+Zω2

implies that

z + Zω1 + Zω2 = (z + Zω1 + Zω2) ∩
⋃

σ∈{±}2
cσ,

where

c++ = c(ω1, ω2), c−+ = c(−ω1, ω2, ), c−− = c(−ω1,−ω2), c+− = c(ω1,−ω2).

Let uσ be a rotation matrix for cσ and write aσ for acσ , σ ∈ {±}2. Then

Z(z, ω, s) =
∑

σ∈{±2}

ζ

(
u++a++,

(
x1

x2

)
, s

)
+ ζ

(
u−+a−+,

(
1− x1

x2

)
, s

)
+

ζ

(
u−−a−−,

(
1− x1

1− x2

)
, s

)
+ ζ

(
u+−a+−,

(
x1

1− x2

)
, s

)
holds whenever z /∈ Zω1 +Zω2. This holds in particular when z = 1 in which case, by (3.45),
we have an expression for ζS(σ, s) as a sum of four Shintani zeta functions. By the following
exercise, this is the decomposition of ζS(σa, s) subordinate to the Shintani fan

C := {cσ : σ ∈ {±}2}.

Exercise 3.30.

1. We may assume without loss of generality that 0 ≤ xi ≤ 1, for i = 1, 2, with strict
inequalities for at least one i. Why?

2. Show that

(1 + Zω1 + Zω2) ∩ Pc++ =

{(
x1

x2

)}
,

and similarly for the other cones in C.
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Thus, by (3.43), we have

Φ1(a, C, {uc}) + Φ2(a, C, {uc}) ≡ ζ ′S(σa, 0) (mod 2πi
N

Z).

Note that Φ1(a, C, {uc}) and Φ2(a, C, {uc}) are complex conjugate and that, by statement
2. of Proposition 3.23, the cosets

Φk(a, C, {uc}) +
2πi

Nw
Z (k = 1, 2)

are independent of C. Let us denote these cosets by Φk(a).

Theorem 3.31 ([28]). Let f be the smallest positive integer in f. Then we may take N = f
and we have

Φk(a) ≡ − log ga(τ)(k)

(
mod

2πi

Nw
Z

)
Since the multiple Γ-functions constitute the main terms of derivatives at s = 0 of

Shintani zeta functions, it is becomes less surprising that Shintani’s method can be used to
prove the Kronecker limit formula. The standard construction of the Siegel function uses the
theory of elliptic functions. The prototypical elliptic function, the Weierstrass ℘-function, is
intimately related to the double gamma function.

Exercise 3.32. Show that

d3

dz3
Γ(z, (ω1, ω2)) = −2

∑
m,n

(z +mω1 + nω2)−3 =
d

dz
℘(z, (ω1, ω2)).

Can you compute the constant

ν :=
d2

dz2
Γ(z, (ω1, ω2))− ℘(z, (ω1, ω2))?

3.9 Complex cubic fields–the work of Ren and Sczech

Let F be an ATR cubic field with distinct embeddings

x 7→ x1 ∈ R, x 7→ x2 ∈ C, x 7→ x3 ∈ C.

Note that x2 and x3 are complex conjugates for all x ∈ F . Let f, σ, and a all be as in §3.6
and let ε be the generator of E(f) such that ε1 > 1. Let (C, {uc}) be as Theorem 3.14. Define

ϑ(a, C) = ϑ2(a, C) = Φ2(a, C)− Φ1(a, C) log ε2

log ε1

.

Proposition 3.33.

1. The coset ϑ(a, C) + 2πi
N

Z does not depend on our choices of a and C.
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2. We have

ϑ(a, C) + ϑ(a, C) = Φ1(a, C) + Φ2(a, C) + Φ3(a, C) = ζ ′S(σ, 0).

Proof. We first consider the dependence on C. Let C ′ be another Shintani fan for F . By
Proposition 3.23, there is a unit η ∈ E(f) such that

Φk(a, C ′)− Φk(a, C) ≡
1

N
log η1 (mod 2πi

N
Z) (k = 1, 2, 3). (∗k)

Multiplying ∗1 by log(η2)/ log(η1) and subtracting the result from ∗2, we obtain

Φ2(a, C ′)− log η2

log η1

Φ1(a, C ′) ≡ Φ2(a, C)− log η2

log η1

Φ1(a, C) (mod 2πi
N

Z).

Since ε generates E(f), η = εm for some m ∈ Z and we have

log(η2)

log(η1)
=

log(ε2)

log(ε1)
.

(This is where we use the fact that we are working with a cubic field.) Therefore, 1. holds.
We now prove 2. Since Φ1(a, C) is real and Φ2(a, C) = Φ3(a, C),

ϑ(a, C) + ϑ(a, C) = −Φ1(a, C) log ε(2) + log ε(3)

log ε(1)
+ Φ2(a, C) + Φ3(a, C)

= Φ2(a, C)− log(ε2)

log(ε1)
Φ1(a, C) + Φ3(a, C))− log(ε3)

log(ε1)
Φ1(a, C)

= Φ1(a, C) + Φ2(a, C) + Φ3(a, C)
= ζ ′K/F,S(σa, 0),

where the penultimate equality uses the fact that log ε(1) + log ε(2) + log ε(3) = 0.

Therefore, the following is compatible with Stark’s conjecture:

Conjecture 3.34 ([20, Conjecture 2]). The Stark unit u(σ, f) satisfies

log u(σ, f)2 ≡ ϑ2(a, C) (mod 2πi
N

Z) (k = 2, 3).

Since complex cubic fields have unit rank one, the quotient ηk′/ηk is independent of η for
any k, k′. We used this fact in an essential way in the proof of Proposition 3.33.

Question: Can the methods described above be adapted to give candidate formulas for
Stark units of ATR fields of degree > 3?
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3.10 TR∞ – The invariants of Shintani and Yamamoto

Let F be a totally real field with infinite places v1, . . . , vm. For x ∈ F , we abbreviate vi(x)
by x(i). Let f be an ideal of OF , let Kf be the narrow ray class field of F of conductor f, and
let G(f) = Gal(Kf/F ). Choose elements µ1, . . . , µm ∈ OF such that

µ
(j)
i

{
< 0 if i = j;

> 0 if i 6= j,
(3.49)

and let τi ∈ G(f) be the image of (µi) under the Artin map. Let χ be a character of G(f)
and consider the Hecke L-function L(χ, s). Then

ords=0 L(χ, s) = |{i : χ(τi) = 1}|. (3.50)

Let µ = µ1 · · ·µm and τ = τ1 · · · τm, and define

ζ+(σ, s) = −ζ(σ, s) + (−1)mζ(στ, s).

Lemma 3.35. We have ζ+(σ, 0) = 0 for all σ ∈ G(f).

Proof. Applying the Fourier inversion formula,

ζ(στ, 0) =
∑

χ:G(f)→C×

χ(στ)−1L(χ, 0).

By (3.50), L(χ, 0) = 0 unless χ(τi) = −1 for all i, in which case χ(τ) = (−1)m. Therefore,

ζ(στ, 0) = (−1)mζ(σ, 0).

The result follows.

Since ζ+(σ, s) vanishes at s = 0, it is natural to investigate the derivative. Define the
Shintani-Yamamoto invariant by

X(σ) = exp

(
d

ds

∣∣∣∣∣
s=0

ζ+(σ, s)

)
.

This invariant was introduced by Shintani in the case m = 2. Its definition and properties
in the case of totally real fields of arbitrary degree are due to Yamamoto. To connect X(σ)
with the Stark conjecture for Hecke L-functions, fix an index i and let χ : G(f) → C× be
such that

χ(τj) =

{
1 if i = j;

−1 if i 6= j.

Then L(χ, s) has a simple zero at s = 0, putting us in case TR∞.
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Proposition 3.36. We have:

L(χ, s) = −1

2

∑
σ∈G(f)

χ(σ)X(σ).

Proof. Choose a set of representatives {%} for G(f)/〈τ〉. Then

L(χ, 0) =
∑
%

(
χ(%)ζ(%, 0) + χ(%τ)ζ(%τ, 0)

)
=
∑
%

χ(%)
(
ζ(%, 0) + (−1)m−1ζ(%τ, 0)

)
= −1

2

∑
σ∈G(f)

χ(σ)X(σ)

Let a be an ideal, (a, f) = 1, whose image under the Artin map is σ ∈ G(f). Let A be
the set of constituent cones of a Shintani fundamental domain of E(f) acting on Rm

>0 such
that, for every A ∈ A, we have A(j) ∈ a−1f for all j. Define the refined Shintani-Yamamoto
invariant

Xk(σ) =
∏
A∈A

∏
x∈Ω(1,a−1f,A)

S(x(k), A(k)).

Theorem 3.37 (Shintani (m = 2), Yamamoto (m ≥ 2)). The invariant Xk(σ) is well
defined, i.e., its value does not depend on our choice of ideal a or cone decomposition A.
Moreover, we have the following decomposition of X(σ)

X(σ) =
m∏
k=1

Xk(σ).

Remark 3.38. The quantities logX(σ) and log
(
X1(σ) · · ·Xm(σ)

)
are the derivatives at s =

0 of the partial zeta function ζ+(σ, s) and the Shintani zeta function ζ+(a,A, s), respectively.
The main step in the proof of the theorem is establishing the equality of these two zeta
functions.

The following result indicates that the construction of the refined Shintani-Yamamoto
invariants is consistent with a hypothetical Shimura reciprocity law:

Theorem 3.39 (Shintani (m = 2), Yamamoto (m ≥ 2)). We have:

Xk(τjσ) =

{
Xk(σ) if j = k;

Xk(σ)−1 if j 6= k.

From here, a formal argument establishes the following sharpening of Proposition 3.36.

Corollary 3.40. Let χ be as in Proposition 3.36. Then

L(χ, s) = −1

2

∑
σ∈G(f)

χ(σ)Xi(σ).
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Exercise 3.41. Prove the corollary. Hint: Consider the sum∑
ν∈{0,1}m

χ(τ ν11 · · · τ νmm σ) logX(τ ν11 · · · τ νmm σ).



Chapter 4

Eisenstein cocycles and applications
to case TRp

4.1 Motivation: Siegel’s formula

The definition of the Eisenstein cocycle is motivated by a formula of Siegel relating special
values of zeta functions of real quadratic fields to periods of Eisenstein series.

4.1.1 Eisenstein series

For an even integer k > 2, consider the weight k Eisenstein series defined by the absolutely
convergent sum:

Ek(z) :=
∑′

m,n

1

(mz + n)k
(4.1)

=
2(2πi)k

(k − 1)!

−Bk

2k
+
∞∑
n=1

∑
d|n

dk−1qn

 . (4.2)

As usual, the ′ adorning the sum in (4.1) indicates that the sum runs over all pairs

(m,n) ∈ Z2 − {(0, 0)}.

The Bernoulli numbers Bk appearing in (4.2) are defined for all k ≥ 0 by the formal power
series

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
,

with Bk = Bk(0). The holomorphic function Ek on the upper half plane H is a modular
form of weight k for Γ := SL2(Z).

More generally, fix a pair v = (v1, v2) ∈ (Q/Z)2 and define

Ek,v(z) :=
∑′

m,n

e(mv1 + nv2)

(mz + n)k
, e(x) := e2πix. (4.3)

49
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If we write (v1, v2) = (a/N, b/N), the q-expansion of Ek,(v1,v2) is given by

Ek,(v1,v2)(z) =
2(2πi)k

(k − 1)!

[
−B̃k(v2)

2k
+

1

Nk−1

∞∑
n=1

σk−1,(v1,v2)(n)qnN

]
, qN = e(z/N), (4.4)

where

σk−1,(v1,v2)(n) =
1

2

 ∑
d|n

d≡b (N)

dk−1e
(
−n
d
v1

)
+ (−1)k

∑
d|n

d≡−b (N)

dk−1e
(n
d
v1

) .

Here the “periodic Bernoulli polynomials” B̃k(x) are defined by B̃k(x) = Bk(x− [x]) if k 6= 1,
and

B̃1(x) =

{
x− [x]− 1

2
x 6∈ Z

0 x ∈ Z.
(4.5)

For k ≥ 1, these periodic functions satisfy the explicit Fourier expansion:

B̃k(x) = − k!

(2πi)k

∑′

n∈Z

e(nx)

nk
. (4.6)

The sum (4.6) converges absolutely for k > 1, but requires special comment for k = 1. One
can evaluate the sum either by summing from −N to N and taking the limit as N → ∞
(“Eisenstein summation”) or by introducing a factor of |n|s in the denominator, which causes
the sum to converge absolutely for Re(s) > 0, and taking the limit as s→ 0 from the right
(“Hecke summation”). It turns out that both methods give the same result (this follows
from Abel’s Theorem for Dirichlet Series, see [25]), namely the function (4.5).

In view of the absolute convergence of the sum defining Ek,v(z) for k > 2, it is easy to
see that Ek,v is a modular form of weight k for the modular group Γ(N) ⊂ Γ, where N is
the denominator of v. More generally, the Ek,v for varying v are permuted under the weight

k action of Γ; for γ =

(
a b
c d

)
∈ Γ, we have

Ek,v|γ(z) = (cz + d)−kEk,v(γz) = Ek,γ−1v(z), (4.7)

where Γ acts on Q2 by left multiplication on column vectors.
Because the series (4.3) does not converge absolutely for k = 2, the situation for the

Eisenstein series of weight 2 is somewhat more delicate. Hecke’s method of dealing with the
problem is to introduce an extra complex variable s:

E2,v(z, s) :=
∑′

m,n

e(mv1 +mv2)

(mz + n)2|mz + n|s
.

This sum converges absolutely for Re(s) > 0, and for fixed z can be extended by analytic
continuation to a function of s on the entire complex plane. Hecke then considered the value
of the analytically continued E2,v(z, s) at s = 0.
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A more classical way to deal with the weight 2 Eisenstein series, due to Eisenstein, is to
specify an order of summation for the terms in the conditionally convergent sum. We may
define:

E2,v(z) := lim
M→∞

M∑
m=−M

(
lim
N→∞

N∑′

n=−N

e(mv1 + nv2)

(mz + n)2

)
.

The Eisenstein summation method yields the function E2,v(z) with q-expansion given by
(4.4). A proof of this fact is given in [34, Part III, equation (11)]. The Hecke summation
yields the same function E2,v(z) when v 6= (0, 0) ∈ (Q/Z)2. However, when v = 0, the Hecke
summation method yields the function

E2,(0,0)(z, 0) = E2,(0,0)(z) +
π

Im(z)
.

The holomorphic function E2(z) = E2,(0,0) on the upper half-plane obtained using Eisen-
stein summation is not a modular form of weight 2; it satisfies a transformation formula
for the weight 2 action of Γ that contains a certain “error term.” Conversely, the function
E2(z) + π/ Im(z) obtained using Hecke summation is invariant under the weight 2 action of
Γ, but it is not holomorphic.

We avoid these difficulties by only considering1

v ∈ V := (Q/Z)2 − {(0, 0)},

for which the function E2,v(z) is in fact a modular form of weight 2 for the group Γ(N),
where N is the denominator of v. This fact can be proven using the fact that E2,v can be
expressed as a linear combination of certain special values of the Weierstrass ℘-function.2

Alternatively, one can show that for v ∈ V , E2,v(z) is a scalar multiple of the logarithmic
derivative of a modular unit on Γ(N) called a Siegel unit. (Recall that a modular unit is a
modular function of weight zero with no zeroes or poles on H; the logarithmic derivative of
such a function is always a modular form of weight 2.) Furthermore, the E2,v satisfy (4.7)
for v ∈ V .

1We view the elements of V as column vectors, so V has a natural left Γ-action.
2Exercise: Prove that if (a, b) 6∈ NZ2, then

E2,(a/N,b/N)(z) =
1

N2

N−1∑
A,B=0

(A,B) 6=(0,0)

e

(
Aa+Bb

N

)
℘z

(
Az +B

N

)
, (4.8)

where ℘z denotes the Weierstrass function associated to the lattice 〈1, z〉:

℘z(x) =
1

x2
+
∑′

m,n∈Z

(
1

(mz + n+ x)2
− 1

(mz + n)2

)
,

using the final formula of [34, Chapter III, §8]. Conclude that E2,(a/N,b/N)(z) is a modular form of weight 2
on Γ(N).
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Finally, we note a distribution property satisfied by the Ek,v(z). For each positive integer
N and fixed v ∈ (Q/Z)2, assuming additionally that v ∈ V if k = 2, we have∑

w∈( 1
N
Z/Z)2

Ek,v/N+w(z) = N2−k · Ek,v(z). (4.9)

4.1.2 The Dedekind-Rademacher homomorphism

Though not essential for our exposition, we would be remiss if we did not mention the
Dedekind-Rademacher homomorphism. Fix a prime p ∈ Z. The congruence subgroup

Γ0(p) ⊂ Γ = SL2(Z)

is the subgroup of matrices whose reductions modulo p are upper triangular. Define

E∗2(z) := E2(z)− pE2(pz)

= 2(2πi)2

p− 1

24
+
∞∑
n=1

∑
d|n

(d,p)=1

dqn

 . (4.10)

The fact that E∗2(z) is a modular form of weight 2 on Γ0(p) follows from the transformation
property of E2(z) under the action of Γ (the “error terms” for E2(z) and pE2(pz) cancel).
However, we give another proof that perhaps sheds more light on the situation. Associated
to the prime p we define the modular unit α(z) := ∆(pz)/∆(z) on Γ0(p)\H (recall that a
modular function is called a modular unit if it has no zeroes or poles on the complex upper
half plane). It is easy to check using the q-expansion of ∆ that the logarithmic derivative of
α is simply E∗2(z), up to a constant:

E∗2(z) =
2πi

12
· α
′(z)

α(z)
. (4.11)

Exercise: prove (4.11) by comparing q-expansions and conclude that E∗2(z) is a modular
form of weight 2 on Γ0(p).

The modular form E∗2(z) defines a homomorphism Φp : Γ0(p) −→ Z by the rule

Φp(γ) =
12

(2πi)2

∫ γτ

τ

E∗2(z)dz, (4.12)

for any τ ∈ H. The fact that E∗2(z)dz is invariant under γ implies that the value (4.12)
is independent of τ . The fact that Φp is an integer follows from equation (4.11) and the
argument principle: let c denote a smooth oriented path in the upper half-plane connecting
the point τ to γτ ; then Φp(γ) is the winding number of the closed path α(c) around the
origin in the complex plane. The homomorphism Φp is called the Dedekind–Rademacher
homomorphism, and is studied in detail in [19].

Note that the forms E2,v refine E∗2 in the sense that

p−1∑
i=1

E2,(i/p,0)(z) = −E∗2(z).
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4.1.3 Siegel’s formula

Let F be a real quadratic field, and let f be an ideal of OF . Define K = Kf to be the narrow
ray class field of F associated to the conductor f, and let R denote the set of archimedean
primes and those dividing f. Let a be an ideal of OF relatively prime to f, and denote by σa
the Frobenius automorphism in G = Gal(K/F ) associated to a. Siegel’s formula expresses
the values of the ζ-function ζK/F,R(σa, s) at nonpositive integers as periods of Eisenstein
series.

Fix a Z-basis {w1, w2} for the fractional ideal a−1f. Fix a real place of F and assume
that the basis is oriented in the sense that

w1w2 − w2w1 > 0 (4.13)

at this place. The pair {w1, w2} provides a Q basis for F , and the action of multiplication
by F on itself provides an embedding

ι : F ↪→M2(Q) such that ι(OF ) ⊂M2(Z);

explicitly we have

ι(α) =

(
a b
c d

)
where (w1α,w2α) = (w1, w2)

(
a b
c d

)
. (4.14)

Let ε denote a fundamental totally positive unit of F congruent to 1 (mod f) such that

0 < ε < 1 (4.15)

in our chosen real embedding. Let
γ = ι(ε) ∈ Γ. (4.16)

Let P = Q[x, y], and let Γ act on P by3

(gP )(x, y) := P ((x, y)g).

Define a quadratic form P ∈ P :

P (x, y) = Na · NormF/Q(xw1 + yw2) (4.17)

= Na · (xw1 + yw2)(xw1 + yw2) ∈ Z[x, y].

While the quadratic form P depends on the chosen basis w1, w2, the Γ-equivalence class of
P depends only on the ideal a−1f (and the fixed real place used to define the orientation).
Next, define a vector v = (v1, v2) ∈ Q2 by the equation

1 = v1w1 + v2w2. (4.18)

Siegel’s formula may be stated:

3Our convention is that the argument of P is a row vector. However, we will often be interested in the
value of P on a column vector v, in which case we simply write P (v) for P (vt), where vt is the transpose of
v. In terms of the action of Γ, we have (gP )(v) := (gP )(vt) = P (vtg), which is written in terms of a column
vector as P (gtv). This should not cause confusion, because only one of the expressions gv or vg makes sense
if v is a vector, depending on whether it is a column vector or row vector.
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Theorem 4.1. Fix τ in the complex upper half-plane H. Let r ≥ 1 be an integer, and
suppose that v ∈ V when r = 1. Then

ζK/F,R(σa, 1− r) =
(2r − 1)!

(2πi)2r

∫ γτ

τ

P (z, 1)r−1E2r,v(z)dz. (4.19)

Exercise: prove that

γtP = P and γ−1v ≡ v (mod Z2),

and deduce that the right side of (4.19) is independent of τ . Prove furthermore that this
value depends on the image of a in the narrow ray class group of conductor f, and not on a
itself.

Proof. Siegel’s theorem actually relates the right side of (4.19) to the value of a certain zeta
function at r; our formulation invokes the functional equation for these zeta functions. We
will demonstrate how to obtain our result from Siegel’s.

Consider the dual of the ideal a−1f under the trace map, namely af−1d−1, where d is the
different of F . This fractional ideal has Z-basis {w∗1, w∗2}, the dual basis to the basis {w1, w2}
of a−1f under the trace. Note that this basis is oriented as in (4.13). Define

P ∗(x, y) := N(a−1fd) N(xw∗1 + yw∗2) ∈ Z[x, y]. (4.20)

One may verify that P ∗(y,−x) · Nf = −P (x, y). Let γ∗ denote the inverse transpose of γ.
This matrix satisfies

(w∗1, w
∗
2)γ∗ = (w∗1, w

∗
2)ε−1.

Let us now invoke the change of variables

u = −1/z = S(z), S =

(
0 −1
1 0

)
,

in the integral on the right side of (4.19). Writing τ ′ = Sτ , and noting Sγ∗S−1 = −γ we
find ∫ γτ

τ

P (z, 1)r−1E2r,v(z)dz =

∫ γ∗τ ′

τ ′
P (1,−u)r−1E2r,(v2,−v1)(u)du

= (−Nf)r−1

∫ γ∗τ ′

τ ′
P ∗(u, 1)r−1E2r,(v2,−v1)(u)du. (4.21)

Hifssatz 1 of [29] states that for r > 1, we have:∫ γ∗τ

τ

P ∗(z, 1)r−1E2r,(v2,−v1)(z)dz = crζ(P ∗, γ∗, v, r) (4.22)

where

cr = (−1)r−1 ((r − 1)!)2

(2r − 1)!
Dr−1/2, D = disc(F ),



4.1. MOTIVATION: SIEGEL’S FORMULA 55

and

ζ(P ∗, γ∗, v, r) :=
∑′

(m,n)/∼

e(mv1 + nv2)

P ∗(m,n)r
. (4.23)

Here the equivalence relation ∼ on Z2 − {0} is given by (m,n) ∼ (m,n)(γ∗)t = (m,n)γ−1.
Note that the sign denoted j in [29, Hilfssatz 1] is +1 since {w∗1, w∗2} is oriented, and γ∗

represents the action of ε−1 > 1 with respect to this basis.

The sum in (4.23) converges absolutely for r > 1, and we define it for r = 1 using Hecke
summation; to be precise, we let

ζ(P ∗, γ∗, v, 1, s) :=
∑′

(m,n)/∼

e(mv1 + nv2)

P ∗(m,n)|P ∗(m,n)|s
, Re(s) > 0, (4.24)

and define

ζ(P ∗, γ∗, v, 1) := lim
s→0+

ζ(P ∗, γ∗, v, 1, s). (4.25)

The fact that (4.22) holds for r = 1 when v ∈ V is a form of Meyer’s Theorem.

The value ζ(P ∗, γ∗, v, r) is in fact the special value of a Hecke L-function of F as follows.
Define two characters χi : F

∗ → {±1} by χ0(x) = 1, χ1(x) = sign(Nx). Define the associated
L-functions

L∗j(s) :=
∑

α∈af−1d−1/ε

χj(α)
e(trace(α))

|N(α)|s
.

The function L∗j(s) converges for Re(s) > 1 and has an analytic continuation to the entire
complex plane. Under the change of variables (m,n) 7→ α = mw∗1 + nw∗2, it is clear that

ζ(P ∗, γ∗, v, r) = N(a−1fd)−rL∗j(r), j ≡ r (mod 2). (4.26)

The function L∗j(s) satisfies a functional equation relating it to

Lj(s) :=
∑

α∈a−1f+1/ε

χj(s)

|Nα|s
,

namely,

L∗j(s) =
(−1)jD1/2(Na−1f)π2s22s−2

Γ(s)2
· Lj(1− s). (4.27)

This is [24, pg. 594]. Finally, one may show (see [24, pg. 595]) that

ζK/F,R(σa, 1− r) = 2−2 Nar−1Lj(1− r). (4.28)

Combining equations (4.21)–(4.22) and (4.26)–(4.28) gives the desired result (4.19).
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4.1.4 The Eisenstein cocycle

Siegel’s formula expresses the partial zeta functions of all real quadratic fields via the same
mechanism—integrate Eisenstein series against polynomials. It is then natural to consider
more generally, for τ ∈ H and γ ∈ Γ, the function P × V −→ C defined by

Ψτ (γ)(P, v) :=
(d+ 1)!

(2πi)d+2

∫ γτ

τ

P (z, 1)Ed+2,v(z)dz (4.29)

when P is a homogeneous polynomial of degree d, and extended by linearity to P . Let M
denote the set of maps

f : P × V −→ C

such that for fixed homogeneous P ∈ P of degree d the function

f(P,−) : V −→ C

satisfies the distribution property∑
w∈( 1

N
Z/Z)2

f
(
P,

v

N
+ w

)
= N−d · f(P, v), (4.30)

and for each fixed v ∈ V , the function

f(−, v) : P −→ C

is a Q-linear map. It is easy to verify using the distribution property (4.9) of the Ek,v that
the function Ψτ (γ) is an element of M.

The abelian group M has a Γ-module structure given by

(γf)(P, v) = f(γtP, γ−1v).

Proposition 4.2. The function Ψτ : Γ −→M is an inhomogeneous 1-cocycle:

Ψτ (AB) = Ψτ (A) + AΨτ (B) (4.31)

for A,B ∈ Γ.

Proof. For a homogeneous polynomial P of degree d we calculate, writing

ad =
(d+ 1)!

(2πi)d+2

for simplicity:

Ψτ (AB)(P, v) = ad

∫ ABτ

τ

P (z, 1)Ed+2,v(z)dz

= ad

[∫ Aτ

τ

P (z, 1)Ek,v(z)dz +

∫ ABτ

Aτ

P (z, 1)Ek,v(z)dz

]
= ad

[∫ Aτ

τ

P (z, 1)Ek,v(z)dz +

∫ Bτ

τ

P ((z, 1)At)Ek,A−1v(z)dz

]
= Ψτ (A)(v) + Ψτ (B)(AtP,A−1v)

= (Ψτ (A) + AΨτ (B))(P, v)

as desired.
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We leave as an exercise the fact that the cohomology class [Ψτ ] ∈ H1(Γ,M) represented
by Ψτ is independent of τ .

4.1.5 Pairing between cohomology and homology

Given that Ψτ is a cocycle whose cohomology class does not depend on τ , it is natural
to state Siegel’s formula in terms of the canonical pairing between the cohomology group
H1(Γ,M) and the homology group H1(Γ,M∨). Here M∨ = Hom(M,C) is the C-vector
space dual of M, which is endowed with a natural dual Γ-action: (γm∨)(m) = m∨(γ−1m).

For a Γ-module M , our notation for describing elements of H1(Γ,M) is as follows. Let
IΓ be the augmentation ideal of Z[Γ], which is endowed with a natural left Γ-action. The
group H1(Γ,M) is identified with the kernel of the map

(IΓ ⊗M)Γ −→ (Z[Γ]⊗M)Γ
∼= M (4.32)

The left side of (4.32) denotes the Γ-coinvariants of the tensor product IΓ ⊗M , on which
Γ acts componentwise.4 An element of IΓ ⊗M will be called a 1-chain. A 1-chain whose
image in (IΓ⊗M)Γ lies in the kernel of (4.32) will be called a 1-cycle. The class in H1(Γ,M)
associated to a 1-cycle C will be denoted [C].

Given a real quadratic field F and ideals a, f as in Section 4.1.3, the associated data
γ, P (x, y), and v give rise to a 1-cycle for Γ in M∨ as follows. Let ϕP,v ∈ M∨ be given by
evaluation at P, v:

ϕP,v(f) := f(P, v). (4.33)

Define a chain
CP,v,r := (1− [γ])⊗ ϕP r−1,v ∈ IΓ ⊗M∨.

Note that for any g ∈ Γ, our definitions imply gϕP,v = ϕg−tP,gv. The fact that γtP = P and
γ−1v = v implies that C is in fact a 1-cycle, i.e. it lies in the kernel of (4.32). The homology
class [CP,v,r] ∈ H1(Γ,M∨) depends only on a, f, and r, and not the choice of basis {w1, w2}.
There is a canonical pairing

H1(Γ,M)×H1(Γ,M∨) −→ C

given by 〈
[Ψ],

[∑
([A1]− [A2])⊗ ϕ

]〉
=
∑

ϕ(Ψ(A−1
1 A2)).

Siegel’s theorem can than be stated

ζK/F,R(σa, 1− r) = 〈[Ψτ ], [CP,v,r]〉 ∈ C.

4To prove this description of H1(Γ,M), tensor the exact sequence of Γ modules

0 −→ IΓ −→ Z[Γ] −→ Z −→ 0

with M and take the long exact sequence in homology. The module Z[Γ] ⊗M is induced and hence has
trivial H1; the result follows. Note that the composed map (IΓ ⊗M)Γ →M in (4.32) is given explicitly by∑

([γ1]− [γ2])⊗m 7→
∑

(γ−1
1 m− γ−1

2 m).
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One appeal of this formulation of Siegel’s theorem is that it demonstrates that the formula
for ζK/F,R(σa, 1− r) depends only on the cohomology class [Ψτ ]. Though it is not clear from
our current presentation, we will show below that there is a cocycle Ψ representing the class
[Ψτ ] that assumes rational values, i.e. Ψ(γ)(P, v) ∈ Q for all γ ∈ Γ, P ∈ P and v ∈ V .
This will imply the classical theorem (also due to Siegel) that the values ζK/F,R(σa, 1 − r)
are rational for positive integers r.5

4.1.6 Smoothing

We now introduce a prime ` to “smooth” the cocycle Ψτ . Not only will this allow us to
define a representative cocycle that achieves rational values, we will in fact show that certain
specializations of this cocycle lie in Z[1

`
]. On the zeta function side of Siegel’s formula, the

prime ` will correspond to a prime that splits in the real quadratic field F ; making a choice
of prime ideal c ⊂ OF with norm `, we will take the smoothing set T = {c}.

Define V` := Q2 − (1
`
Z× Z) modulo Z2. For v ∈ V` define

E
(`)
k,v(z) := `k−2 · (Ek,(`v1,v2)(`z)− Ek,v(z)).

From (4.7), it follows that the E
(`)
k,v are permuted by the weight k action of Γ0(`):

E
(`)
k,v|γ = E

(`)

k,γ−1v, γ ∈ Γ0(`). (4.34)

In particular, each individual E
(`)
k,v is a modular form of weight k on Γ0(`) ∩ Γ(N), where N

is the denominator of v. The purpose of `-smoothing is that the constant term of E
(`)
k,v(z)

vanishes at the cusp ∞ by (4.4). The constant term of E
(`)
2,v(z) also vanishes at the cusp γ∞

for each γ ∈ Γ0(`) by (4.34).
We define for γ ∈ Γ0(`), v ∈ V`, τ ∈ H and a homogeneous P ∈ P of degree d, the period

Ψ`,τ (γ)(P, v) =
(d+ 1)!

(2πi)d+2

∫ γτ

τ

P (z, 1)E
(`)
d+2,v(z)dz ∈ C.

The fact that the constant term of E
(`)
d+2,v(z) vanishes at the cusps ∞ and γ∞ implies that

the integral above converges as τ →∞, i.e. the integral:

Ψ`(γ)(P, v) = Ψ`,∞(γ)(P, v) :=
(d+ 1)!

(2πi)d+2

∫ γ∞

∞
P (z, 1)E

(`)
d+2,v(z)dz (4.35)

is well-defined. The remarkable fact is that the values in (4.35) can be shown to be rational
numbers. In fact, an even stronger result holds (see Theorem 4.4 below); before stating this
result, we first show that Ψ` is a 1-cocycle. Let M` be defined the same as M (see the
beginning of Section 4.1.4) with V replaced by V`. The abelian groupM` is a Γ0(`)-module.

5Since we are avoiding the difficulties associated to v = (0, 0), our proof will only hold under the additional
assumption f 6= 1. One can handle the case f = 1 as well by enlarging the module M and generalizing our
cocycle Ψ. This is discussed in Section 4.5.
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Proposition 4.3. The function Ψ` is a 1-cocycle on Γ0(`) valued in M`:

Ψ` ∈ Z1(Γ0(`),M`).

Proof. Let

π` =

(
` 0
0 1

)
. (4.36)

For any τ ∈ H and homogeneous P ∈ P of degree d, we have

`−d ·Ψ`,τ (γ)(P, v) = Ψπ`τ (π`γπ
−1
` )(π−1

` P, π`v)− `Ψτ (γ)(P, v). (4.37)

The fact that Ψ`,τ is a cocycle on Γ0(`) valued inM` follows formally from the fact that Ψτ

is a 1-cocycle on Γ together with (4.37) and the observation that conjugation by π` sends
Γ0(`) into Γ. We leave this as an exercise: prove that

Ψ`,τ (AB) = Ψ`,τ (A) + AΨ`,τ (B)

for A,B ∈ Γ0(`) using (4.31) and (4.37). Taking the limit as τ → i∞ gives the desired result
for Ψ`.

The integrality result that we would like to state is best presented in terms of the pairing
between between cohomology and homology introduced in Section 4.1.5. LetH1(Γ0(`),M∨

` )int

denote the subgroup of H1(Γ0(`),M∨
` ) generated by the 1-chains

C = ([A1]− [A2])⊗ ϕP,v ∈ IΓ0(`) ⊗M∨
`

(see (4.33)) with Ai ∈ Γ0(`), P ∈ P , and v ∈ V` such that:

• we have
At1P = At2P and A−1

1 v = A−1
2 v; (4.38)

• P homogeneous and satisfies

P (v + 1
`
Z⊕ Z) ⊂ Z

[
1
`

]
. (4.39)

Condition (4.38) ensures that the 1-chain C is in fact a 1-cycle.

Theorem 4.4. The value Ψ`(γ)(P, v) is a rational number for any γ ∈ Γ0(`), P ∈ P, v ∈ V.
Furthermore,

〈[Ψ`], [C]〉 ∈ Z[1
`
]

for any [C] ∈ H1(Γ0(`),M∨
` )int.

We will not prove this fact in this article, but we refer the reader to [8] and [10] for similar
results. As mentioned before, we will take a different approach to the Eisenstein cocycle due
to Sczech and prove Theorem 4.4 in this setting.

Let us now present an `-smoothed version of Siegel’s theorem. Suppose that the prime
` splits or ramifies in the real quadratic field F , and that ` is relatively prime to f. Let c
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denote a prime ideal of OF of norm `, and let T = {c}. Choose an oriented basis {w1, w2}
of a−1f such that {1

`
w1, w2} is a basis of a−1c−1f. Let ε be a fundamental totally positive

unit congruent to 1 (mod f) such that 0 < ε < 1 in our fixed real embedding of F . If γ is
the matrix for multiplication by ε with respect to the row vector {w1, w2} as in (4.14), then
γ ∈ Γ0(`). Let P (x, y) ∈ Z[x, y] be defined by

P (x, y) = N(a) NormF/Q(xw1 + yw2), (4.40)

and define v ∈ Q2 by
1 = v1w1 + v2w2. (4.41)

Note that v 6∈ 1
`
Z ⊕ Z if f 6= 1. The pair (P, v) satisfy the integrality criterion (4.39) of

Theorem 4.4 (exercise), so together with γ they define the cycle

CP,v,r = ([1]− [γ])⊗ ϕP r−1,v (4.42)

yielding a class [CP,v,r] ∈ H1(Γ0(`),M∨
` )int.

We leave as an exercise the proof of the following `-smoothed version of Siegel’s Theorem,
using (4.37) and Theorem 4.1:

Theorem 4.5. For integers r ≥ 1, we have

ζK/F,R,T (σa, 1− r) = Ψ`(γ)(P r−1, v)

= 〈[Ψ`], [CP,v,r]〉.

Combining with Theorem 4.4, one obtains

Theorem 4.6. We have
ζK/F,R,T (σa, 1− r) ∈ Z

[
1
`

]
for all positive integers r.

This result was originally proven for real quadratic fields F by Coates and Sinnott [7],
and for general totally real fields F by Deligne and Ribet [12], Pi. Cassou-Nogues [3], and
Barsky [2], using different techniques.

4.2 Sczech’s construction of the Eisenstein cocycle

Instead of calculating the integrals in (4.35) exactly and proving the integrality Theorem 4.4,
we will instead provide a definition of the Eisenstein cocycle given by Sczech in [24] and
refined by `-smoothing in [5]. We will prove the analogue of Siegel’s theorem using Sczech’s
definition of the Eisenstein cocycle directly, and prove the integrality Theorem 4.4 for an
`-smoothed version of Sczech’s cocycle. The justification for adopting this approach is that
Sczech’s method generalizes to n > 2, and we describe this generalization at the end of this
chapter. It may very well be the case that the method of integration of Eisenstein series
generalizes to n > 2 as well, but this remains an open question.

The contents of Section 4.2 are all drawn from various papers of Sczech—[24], [23], [22].
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4.2.1 Sczech’s definition of Ψ

Sczech’s method begins by integrating (4.3) in weight k = 2 formally, term by term, disre-
garding issues of convergence. We obtain∫ Aτ

τ

E2,v(z)dz =
∑′

m,n

(Aτ − τ)e(mv1 + nv2)

(mAτ + n)(mτ + n)
.

Let us study this sum if we send τ → ∞, or more generally to a rational number r/s. We

obtain, with A =

(
a b
c d

)
, the sum

∑′

m,n

((ar + bs)s− (cr + ds)r)e(mv1 + nv2)

(m(ar + bs) + n(cr + ds))(mr + ns)
. (4.43)

There are two clear problems with this sum—(1) There are pairs (m,n) for which the de-
nominator vanishes, namely those pairs orthogonal to the column vectors

(
r
s

)
or A

(
r
s

)
; (2)

even if these terms are excluded, the sum converges only conditionally, so we must specify
an order in which to sum the terms.

To handle the first problem, complete the column vector
(
r
s

)
to a matrix

B =

(
r t
s u

)
∈ Γ.

If (m,n) is orthogonal to (r, s), then it is necessarily not orthogonal to (t, u) since the matrix
B is invertible. Hence we can replace mr+ns with mt+nu. Similarly, if (m,n) is orthogonal
to the first column of AB, then it is necessarily not orthogonal to the second column, and
we may replace the dot product of (m,n) with the first column of AB in (4.43) by the dot
product with the second column. The inclusion of these extra terms into the sum must
seem artificial at this point; let us therefore make two comments. First, the inclusion of
these terms allows one to prove that the resulting sum is a (homogeneous) 1-cocycle for Γ.
Second, upon `-smoothing, these extra terms will cancel out and hence can be ignored.

Therefore, for matrices A1, A2 ∈ Γ and any vector z ∈ R2 − {0} (these play the role of
B, AB, and (m,n) in the discussion above, respectively), we define σi = σi(z) to be the first
column of the matrix Ai that is not orthogonal to z. Let σ = (σ1, σ2) Consider the sum:6

Ψ(A1, A2)(1, v) :=
1

(2πi)2

∑′

z∈Z2

det(σ)

〈z, σ1〉〈z, σ2〉
· e(〈z, v〉). (4.44)

Let us address the convergence of this sum. Let Q be a nondegenerate binary quadratic form
over Q with positive discriminant. For each real number t, the integer vectors z ∈ Z2 such
that |Q(z)| < t lie on the union of finitely many hyperbolas. On each hyperbola, it is easy

6Here and in the sequel, we view the elements z ∈ Z2 as row vectors. We write 〈z, v〉 for the usual
dot product where z is a row vector and v is a column vector. In particular, for γ ∈ GL2(R), we have
〈zγ, v〉 = 〈z, γv〉.
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to see that the sum in (4.44) converges absolutely, since the denominator is quadratic in z.
Therefore, the sum in (4.44) is well-defined if we restrict to the z such that |Q(z)| < t. We
will show that the limit

Ψ(A1, A2)(1, v) :=
1

(2πi)2
lim
t→∞

∑′

z∈Z2

|Q(z)|<t

det(σ)

〈z, σ1〉〈z, σ2〉
· e(〈z, v〉) (4.45)

exists. In fact, we will provide a finite closed form formula for Ψ(A1, A2)(v) that shows that
this value is a rational number that is independent of the choice of Q. Equation (4.45) gives
Sczech’s definition of the Eisenstein cocycle specialized to P = 1; we will show that it is a
homogeneous 1-cocycle for Γ, which entails two properties:7

• Ψ(γA1, γA2) = γΨ(A1, A2) for γ,A1, A2 ∈ Γ,

• Ψ(A1, A2)−Ψ(A1, A3) + Ψ(A2, A3) = 0 for A1, A2, A3 ∈ Γ.

(A function satisfying the first property above is called a homogeneous 1-cochain. The
second property is the cocycle condition.) At this point we can explain why we have chosen
to introduce the quadratic form Q rather than the two more natural methods of evaluating
conditionally convergent sums. Eisenstein summation is not preserved under the action of
Γ, so it would not be clear how to establish that Ψ is a Γ-invariant cochain; under Hecke
summation it is difficult to directly establish the cocycle condition. (See, however, the
comments and footnote following the proof of Proposition 4.12.)

Let us now define the cocycle Ψ evaluated on a general homogeneous polynomial P ∈ P
of degree d. In view of the equation (4.29) that has provided our motivation, we note that

P (−∂x,−∂y)
(

1

(xτ + y)2

)
= (d+ 1)!

P (τ, 1)

(xτ + y)d+2
.

Therefore, we generalize from P = 1 to general P as follows. Let A1, A2 ∈ Γ. Recall that
for z = (x, y) ∈ R2 − {0} we defined σi = σi(z) to be the first column of Ai that is not
orthogonal to z. Write σ for the matrix with columns (σ1, σ2). Define a function ψ(A1, A2)
on R2 − {0} by

ψ(A1, A2)(z) =
det(σ)

〈z, σ1〉〈z, σ2〉
.

Write
ψ(A1, A2)(P, z) := P (−∂x,−∂y)ψ(A1, A2)(z), z = (x, y),

and define

Ψ(A1, A2)(P, v) :=
1

(2πi)2+d
lim
t→∞

∑′

z∈Z2

|Q(z)|<t

ψ(A1, A2)(P, z) · e(〈z, v〉). (4.46)

7Recall that one recovers the more familiar “crossed homomorphism” definition of an inhomogeneous
1-cocycle via c(γ) := Ψ(1, γ).
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By specializing to the constant polynomial P = 1, we recover the special case given in (4.45).
In the following sections, we will prove that this limit as t → ∞ exists and is independent
of Q, that the value of Ψ is a rational number, and that Ψ is a homogeneous 1-cocycle for Γ
valued inM. Then we will relate special values of Ψ to special values of classical and p-adic
zeta functions of real quadratic fields.

Exercise: Prove that the function ψ(A1, A2)(P,−) on R2−{0} has the following explicit
formula. Write

(σtP )(x, y) = P ((x, y)σt) =
d∑
r=0

Pr(σ)
xryd−r

r!(d− r)!
. (4.47)

Then

ψ(A1, A2)(P, z) =
d∑
r=0

Pr(σ) det(σ)

〈z, σ1〉1+r〈z, σ2〉1+d−r . (4.48)

Having defined Ψ, we can define an `-smoothed version as follows. Recall the matrix
π` defined in (4.36). If A1, A2 ∈ Γ0(`), then the matrices A′i := π`Aiπ

−1
` lie in Γ. For a

homogeneous P ∈ P of degree d, define P ′ = π−1
` P , i.e. P ′(x, y) = P (x/`, y). Similarly for

v ∈ V`, let v′ = π`v = (`v1, v2). Then we define

Ψ`(A1, A2)(P, v) := `d (Ψ(A′1, A
′
2)(P ′, v′)− `Ψ(A1, A2)(P, v)) . (4.49)

The fact that Ψ ∈ Z1(Γ,M) implies that Ψ` ∈ Z1(Γ0(`),M`). This is essentially the same
exercise, in homogenous form, as that given in the proof of Proposition 4.3.

4.2.2 A finite formula for Ψ

The key step in evaluating the sum (4.46) defining Ψ is the calculation of the following sum,
for positive integers r, s:

Br,s(v,Q) := lim
t→∞

(2πi)−r−s
∑′

z∈Z2

|Q(z)|≤t

e(〈z, v〉)
zr1z

s
2

. (4.50)

Here the ′ indicates that the sum extends over all z ∈ Z2 such that z1z2 6= 0. In addition to
proving that this limit exists and is independent of Q, we will give an explicit formula for
its value in terms of the periodic Bernoulli polynomials.

Theorem 4.7. For v ∈ V, the limit (4.50) exists and its value is given by

Br,s(v) :=
B̃r(v1)B̃s(v2)

r!s!
.

In particular the value is independent of Q.

Remark 4.8. If v = (0, 0), Theorem 4.7 still holds unless r = s = 1; in this case, the limit
(4.50) exists and is rational, but its value depends in a simple way on Q.
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We prove Theorem 4.7 in the next section; for now, we show how it enables the proof of:

Theorem 4.9. For A1, A2 ∈ Γ, P ∈ P , and v ∈ V, the limit

Ψ(A1, A2)(P, v) =
1

(2πi)2+d
lim
t→∞

∑′

z∈Z2

|Q(z)|<t

ψ(A1, A2)(P, z) · e(〈z, v〉) (4.51)

exists, is independent of Q, and is a rational number. In fact, if we write the Ai in terms
of their columns as Ai = (ρi, τi) and write ρ = (ρ1, ρ2), then the value of Ψ is given by the
formula

Ψ(A1, A2)(P, v) = sgn(det(ρ))
d∑
r=0

Pr(ρ)
∑

w∈Z2/ρZ2

B1+r,1+d−r(ρ
−1(v + w)) (4.52)

− det(τ1, ρ2)
d∑
r=0

Pr(τ1, ρ2)

det(ρ)1+d−rB0,2+d(A
−1
1 v) (4.53)

− det(ρ1, τ2)
d∑
r=0

Pr(ρ1, τ2)(−1)1+r

det(ρ)1+r
B0,2+d(A

−1
2 v) (4.54)

when det(ρ) 6= 0, and

Ψ(A1, A2)(P,Q, v) = − det(τ1, τ2)
d∑
r=0

Pr(τ1, τ2)

det(τ1, ρ2)
B0,2+d(A

−1
1 v) (4.55)

when det(ρ) = 0.

Proof. Let us consider first the “main term” in the sum in (4.51), which arises from those
z ∈ Z2 not orthogonal to either of the first columns ρ1, ρ2 of A1, A2. The contribution to the
value of Ψ from these z is given by

det(ρ)

(2πi)2+d

∑
z∈Z2,〈z,ρi〉6=0
|Q(z)|<t

d∑
r=0

Pr(ρ)e(〈z, v〉)
〈z, ρ1〉1+r〈z, ρ2〉1+d−r . (4.56)

Changing the order of summation (in this absolutely convergent sum) and substituting the
row vector u = zρ we obtain

det(ρ)

(2πi)2+d

d∑
r=0

Pr(ρ)
∑′

u∈Z2ρ

|(ρ−1Q)(u)|<t

e(〈u, ρ−1v〉)
u1+r

1 u1+d−r
2

. (4.57)

To deal with the fact that the sum ranges over Z2ρ rather than Z2, we introduce a character
relation for u ∈ Z2: ∑

w∈Z2/ρZ2

e(〈u, ρ−1w〉) =

{
| det ρ| if u ∈ Z2ρ

0 if u 6∈ Z2ρ,
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where the sum ranges over column vectors w representing Z2/ρZ2. Therefore, (4.57) may be
written

sgn(det(ρ))

(2πi)2+d

d∑
r=0

Pr(ρ)
∑

w∈Z2/ρZ2

∑′

u∈Z2

|(ρ−1Q)(u)|<t

e(〈u, ρ−1(v + w)〉
u1+r

1 u1+d−r
2

.

The limit of the inner sum as t→∞ is seen to exist and be independent of Q by Theorem 4.7,
giving the following rational value for (4.56):

sgn(det(ρ))
d∑
r=0

Pr(ρ)
∑

w∈Z2/ρZ2

B1+r,1+d−r(ρ
−1(v + w)). (4.58)

This is the term on line (4.52).

The determination of the other terms in the sum defining Ψ is easier. For instance,
consider the terms z ∈ Z2 such that z is orthogonal to ρ1, but not to ρ2. Write ρ1 =

(
a
b

)
.

The set of integer tuples orthogonal to ρ1 is the set of multiples of ρ⊥1 :=
(−b
a

)
, and these

vectors are not orthogonal to ρ2 precisely when det(ρ) 6= 0. We assume this holds and obtain
the following sum as the contribution to Ψ:

det(τ1, ρ2)

(2πi)2+d

∑′

k∈Z
|k|<t′

d∑
r=0

Pr(τ1, ρ2)e(k〈ρ⊥1 , v〉)
k1+r(k · det ρ)1+d−r .

Here we have written t′ = t/|Q(−b, a)|. Taking the limit as t → ∞ and applying (4.6), we
obtain the value

− det(τ1, ρ2)
d∑
r=0

Pr(τ1, ρ2)

det(ρ)1+d−r ·
B̃2+d(〈ρ⊥1 , v〉)

(d+ 2)!
∈ Q, (4.59)

giving the term on line (4.53). Similarly, one finds that the contribution to Ψ of the z ∈ Z2

not orthogonal to ρ1 but orthogonal to ρ2 is given by the term (4.54). Finally, we note that
there exist z ∈ Z2−{0} orthogonal to both ρ1 and ρ2 precisely when det(ρ) = 0. When this
holds, we have seen that the terms above offer no contribution to Ψ, whereas the contribution
of these z to Ψ is calculated to be (4.55).

For an integer matrix ρ and v ∈ Q2/Z2, define the Dedekind sum

Dr,s(ρ, v) := sgn(det(ρ))
∑

w∈Z2/ρZ2

Br,s(ρ
−1(v + w)),

with the convention that this value is zero if det(ρ) = 0. The main term (4.52) in Theorem 4.9
can be written succinctly as

d∑
r=0

Pr(ρ)D1+r,1+d−r(ρ, v).
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We conclude this section by giving a similar formula for the `-smoothed cocycle Ψ` ∈
Z1(Γ0(`),M`). Given A1, A2 ∈ Γ0(`), let ρi denote the first column of Ai and write ρ =
(ρ1, ρ2). Since each Ai ∈ Γ0(`), the matrix

ρ` := 1
`
π`ρ

has integer entries. The matrix ρ` is simply the matrix of first columns of the matrices
A′i = π`Aiπ

−1
` . Define the `-smoothed Dedekind sum

D `
r,s(ρ, v) := Dr,s(ρ`, π`v)− `r+s−1Dr,s(ρ, v). (4.60)

Theorem 4.10. Let P be homogeneous of degree d. We have

Ψ`(A1, A2)(P, v) =
d∑
r=0

Pr(ρ)D `
1+r,1+d−r(ρ, v). (4.61)

Proof. Recall the definition of Ψ` from (4.49). The right side of (4.61) is the contribution
of the main terms of Ψ(A1, A2) and Ψ(A′1, A

′
2) arising from (4.52). The `-smoothing cancels

the other terms. This can be shown directly from the formulas (4.53)–(4.55), but we provide
another, more conceptual argument.

Consider the 4 pairs of tuples e = (e1, e2) with ei = 1, 2. Let X(e) denote the set of pairs
z ∈ Z2 − {0} such that for i = 1, 2, the first column of Ai not orthogonal to z is the eith
one; define X ′(e) using A′1, A

′
2 similarly. The pair e = (1, 1) corresponds to the main term.

We will show that for e 6= (1, 1), the contribution of the X(e) to ` · Ψ(A1, A2) cancels the
contribution of the X ′(e) to Ψ(A′1, A

′
2). Indeed, the map

π` : z = (x, y) 7−→ zπ` = (`x, y)

gives a bijection between X ′(e) and X(e). (Exercise: Prove this fact. The only non-trivial
part is surjectivity; this is where one uses e 6= (1, 1) and the fact that Ai ∈ Γ0(`).) Under this
bijection, the terms in the definition of Ψ(A′1, A

′
2) and ` · Ψ(A1, A2) (see (4.46) and (4.48))

match up for z ∈ X ′(e) and zπ` ∈ X(e); writing (r, d− r) = (r1, r2) and Σ(r, e) :=
∑

i:ei=1 ri,
we have:

P ′r(σ
′) = Pr(σ) · `−Σ(r,e),

〈z, σ′i〉 =

{
〈zπ`, σi〉 if ei 6= 1

`−1〈zπ`, σi〉 if ei = 1,

det(σ′) = `1−#{i: ei=1} det(σ).

Combining these equalities gives for z ∈ X ′(e):
d∑
r=0

P ′r(σ
′) det(σ′)e(〈z, π`v〉)

〈z, σ′i〉1+r〈z, σ′i〉1+d−r = ` ·
d∑
r=0

Pr(σ) det(σ)e(〈zπ`, v〉)
〈zπ`, σi〉1+r〈zπ`, σi〉1+d−r .

Summing over z ∈ X ′(e), the terms from X ′(e) and X(e) cancel out as desired. (In the
application of (4.46), we must use Q(z) on the left and Q(zπ`) on the right and invoke the
independence of the final result on the choice of Q.)
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4.2.3 Proof of Theorem 4.7

In this section we prove that for positive integers r, s, the limit

Br,s(Q, v) = lim
t→∞

(2πi)−r−s
∑′

z∈Z2

|Q(z)|≤t

e(〈z, v〉)
zr1z

s
2

.

has the explicit evaluation

Br,s(v) =
B̃r(v1)B̃s(v2)

r!s!
(4.62)

under the assumption v ∈ V when r = s = 1. We first remark that the desired evaluation
holds easily using Eisenstein summation, i.e.

lim
M→∞

M∑′

z1=−M

(
lim
N→∞

N∑′

z2=−N

(2πi)−r−s
e(〈z, v〉)
zr1z

s
2

)
=
B̃r(v1)B̃s(v2)

r!s!

by (4.6). Our summation method using Q, however, significantly complicates the situation.
Instead of directly calculating Br,s(v), we will study for (u,w) ∈ Q2 the limit

Sr,s(u,w,Q) := lim
t→∞

∑′

z∈Z2+(u,w)
|Q(z)|≤t

1

zr1z
s
2

.

We can then recover Br,s(v) by the formula

Br,s

(
a
N
, b
N
, Q
)

= (2Nπi)−r−s
N∑

i,j=0

e

(
ai+ bj

N

)
Sr,s

(
i
N
, j
N
, Q
)
. (4.63)

Without loss of generality, fix u,w such that 0 ≤ u,w < 1. Denote by L the set of pairs
(x, y) ∈ Z2 + (u,w) such that xy 6= 0. For a positive real number t, let

X(t) = {z ∈ R2 : |Q(z)| < t}.

We partition X(t) into its “symmetric part” S(t) and “asymmetric part” A(t) as drawn in
the diagram below.

In inequalities,

S(t) := {(x, y) ∈ R2 : |Q(x, y)| < t, |Q(x,−y)| < t}
A(t) := {(x, y) ∈ R2 : |Q(x, y)| < t ≤ |Q(x,−y)|},
X(t) = S(t) t A(t).

Write X(t, L) = X(t) ∩ L, etc. With the exclusion of points near the boundary or near the
axes, we can associate to every point

(x, y) = (p+ u, q + w) ∈ S(t, L), (p, q) ∈ Z2,
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Figure 4.1: The symmetric part S(t) and asymmetric part A(t) of X(t)

three other points in S(t, L), namely

(−p+ u, q + w), (−p+ u,−q + w), (p+ u,−q + w).

The contribution to Sr,s(u,w) of these four points is O(p−2q−2). For example, if r = s = 1,
the sum of 1/xy over these four points is

4uw

(u2 − p2)(w2 − q2)
,

and our claim is even easier to prove if r or s is greater than 1. Thus the contribution to
Sr,s(u,w) provided by S(t, L) is an absolutely convergent sum (we leave as an exercise the
verification that the sum of the excluded points “near the boundary or axes” is absolutely
convergent as well). In the limit, S(t) encompasses the whole plane, so the limit as t → ∞
may be computed over any region that is symmetric with respect to the axes and in the limit
covers the entire plane. In particular, if we choose to sum over the boxes

{(x, y) ∈ R2 : |x|, |y| < t},

we obtain the Eisenstein sum:

lim
t→∞

∑
z∈S(t,L)

1

xrys
= cr(u)cs(w),
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where cr are the periodic functions8

cr(u) := lim
N→∞

N∑′

k=−N

1

(k + u)r
.

It remains to deal with the sum over A(t, L). Let us first treat the case r = s = 1. We
have ∑

(x,y)∈A(t,L)

1

xy
=

1

t2

∑
(x,y)∈A(1, 1

t
L)

1

xy
.

Interpreting the right side as a Riemann sum, we recognize the limit as t→∞ as the integral

IQ :=

∫
A(1)

dxdy

xy
. (4.64)

The key point in this argument is that the improper integral IQ converges absolutely (ex-
ercise), whereas the same is not true for the integral over X(1); this explains the need to
extract the symmetric region S(t) from X(t).

A key component of Sczech’s thesis is the determination of the integral IQ. Incredibly,
the integral always has the value 0, π2, or −π2, depending on Q.9 For our purposes, we will
not need the exact value of IQ, but only the fact that it depends only on Q and not on the
pair (u,w). We have shown that

S1,1(u,w,Q) = c1(u)c1(w) + IQ. (4.65)

If (r, s) 6= (1, 1), then a similar argument applies, but we must be careful to deal with the
fact that the integral

∫
A(1)

dxdy/(xrys) does not converge because of the singularities on the

axes. We fix an ε > 0 and let

Aε(t) := {(x, y) ∈ A(t) : |x| ≤ εt or |y| ≤ εt}.

An elementary estimate shows that

lim
t→∞

∑
(x,y)∈Aε(t,L)

1

xrys
= 0

if (r, s) 6= (1, 1). On the complementary region A′ε(t) = A(t)− Aε(t) we have

∑
(x,y)∈A′ε(t,L)

1

xrys
=

1

tr+s−2

 1

t2

∑
(x,y)∈A′ε(1, 1tL)

1

xrys

 . (4.66)

8For u 6∈ Z the cr have expressions in terms of standard trigonometric functions. For example, c1(u) =
π cot(πu). We have d

ducr(u) = −rcr+1(u), hence c2(u) = π2 sin−2(πu). For u ∈ Z, we have cr(Z) = 0 for r
odd and cr(Z) = 2ζ(r) for r even.

9More precisely, factor Q(x, y) = c(αx+ y)(α′x+ y). Then IQ = (sgn(α) + sgn(α′)) · π2/4.
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Figure 4.2: Excising the portion of A(t) within εt of the axes

The sum in parenthesis can again be recognized as a Riemann sum whose limit as t→∞ is
the convergent integral

∫
A′ε(1)

dxdy/(xrys). The extra factor 1/tr+s−2 causes the value (4.66)

to vanish as t→∞ when (r, s) 6= (1, 1). Therefore for (r, s) 6= (1, 1), we have

Sr,s(u,w,Q) = cr(u)cs(w). (4.67)

The desired result (4.62) now follows from (4.63), (4.65), and (4.67) using the Fourier
expansion (4.6) of the periodic Bernoulli polynomials. Note in particular that in the case
(r, s) = (1, 1), the terms involving IQ cancel in the sum over all i, j in (4.63), since (a, b) 6∈
NZ2, i.e. since v 6= 0 in (Q/Z)2. Our calculation holds with an extra term involving IQ in
the case v = 0, r = s = 1. It is possible to make a cocycle that includes the possibility
v = 0, but the module of coefficients M must be enlarged to allow for the mild dependence
on Q caused by the term IQ. This is discussed in greater detail in Section 4.5.

4.2.4 The cocycle properties

In this section, we prove that Ψ ∈ Z1(Γ,M). The Γ-invariance property of Ψ is easy to
verify.

Proposition 4.11. For γ,A1, A2 ∈ Γ, P ∈ P , v ∈ V, we have

Ψ(γA1, γA2)(P, v) = Ψ(A1, A2)(γtP, γ−1v).

Proof. The Γ-invariance property

ψ(γA1, γA2)(P, z) = ψ(A1, A2)(γtP, zγ) (4.68)
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follows directly from (4.48). The desired result now follows from the definition (4.46) and
the fact that the value of Ψ is independent of the Q used to define it (use Q(z) on the left
and Q(zγ−1) on the right).

The cocycle condition is more interesting.

Proposition 4.12. For A1, A2, A3 ∈ Γ, we have

Ψ(A1, A2)−Ψ(A1, A3) + Ψ(A2, A3) = 0.

Proof. Given fixed z ∈ Z2−{0}, the contribution of z to Ψ(Ai, Aj) is a constant (depending
on z but not the Ai) times ψ(Ai, Aj)(P, z). Therefore it suffices to prove that

ψ(A1, A2)(P, z)− ψ(A1, A3)(P, z) + ψ(A2, A3)(P, z) = 0. (4.69)

We stress that it is crucial in this argument that region of the sum, namely |Q(z)| < t, is
independent of the Ai.

10

For each matrix Ai we let σi denote the first column not orthogonal to z. Equation (4.69)
for P = 1 reads:

det(σ1, σ2)

〈z, σ1〉〈z, σ2〉
− det(σ1, σ3)

〈z, σ1〉〈z, σ3〉
+

det(σ2, σ3)

〈z, σ2〉〈z, σ3〉
= 0. (4.70)

We will prove (4.70) for all z ∈ R2 such that the denominators do not vanish; equation (4.69)
then holds for general P by applying the differential operator P (−∂x,−∂y) to equation (4.70),
where z = (x, y). To prove equation (4.70), note that

det

(
〈z, σ1〉 〈z, σ2〉 〈z, σ3〉
σ1 σ2 σ3

)
= 0

since the first row is a linear combination of the last two. Dividing by
∏3

i=1〈z, σi〉 gives the
desired result.

We have proven that Ψ ∈ Z1(Γ,M); as mentioned before, this implies formally that
Ψ` ∈ Z1(Γ0(`),M`).

4.2.5 Relationship with zeta functions

In this section, we prove that with Sczech’s definition of the Eisenstein cocycle, Siegel’s
formula still holds. First we need a lemma. Let σ ∈ M2(R) have nonzero columns σ1, σ2.
Let z ∈ Z2 be such that 〈z, σi〉 6= 0 for i = 1, 2. For a homogeneous polynomial P of degree
d, define f(σ)(P, z) by the right side of (4.48):

f(σ)(P, z) =
d∑
r=0

Pr(σ) det(σ)

〈z, σ1〉r+1〈z, σ2〉d−r+1
,

10Therefore, if one tries to regularize the sum defining Ψ by some other method, such as Hecke’s method
of multiplying by |denominator|s and analytically continuing to s = 0, then this proof of the cocycle relation
would need to altered in a significant way. In our setting, the Hecke summation method does produce the
same explicit formula for Ψ in terms of Dedekind sums for v ∈ V, and therefore gives a cocycle; but this is
a quirk for dimension n = 2 and we do not know if this fact holds for n ≥ 3.
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with the Pr(σ) as in (4.47). We mention two important features of the function f :

• The value of f is unchanged if either column of σ is scaled by a nonzero constant.

• For fixed P and z, f is a continuous function of σ on its domain in M2(R).

We now fix a real quadratic field F , integral ideals a and f, and let the notation be as in
Section 4.1.3. In particular, {w∗1, w∗2} is the dual basis to the oriented basis {w1, w2} of a−1f.
Let

W =

(
w∗1 w∗1
w∗2 w∗2

)
∈ GL2(R),

using our fixed chosen embedding F ⊂ R. Recall the quadratic form P ∗ defined in (4.20):

P ∗(x, y) = N(a−1fd) N(xw∗1 + yw∗2).

Lemma 4.13. For every positive integer r, we have

f(W )(P r−1, z) =
((r − 1)!)2 Nfr−1Dr−1/2

P ∗(z)r
.

Proof. It is easy to verify that P ((x, y)W t) = xy · Na. Hence P r−1
j (W ) = 0 for j 6= r − 1,

and P r−1
r−1 (W ) = ((r− 1)!)2 Nar−1 by (4.47). The result follows from the definition of P ∗ and

the fact that det(W ) = Naf−1/
√
D.

The following is Siegel’s formula using Sczech’s definition of the Eisenstein cocycle.

Theorem 4.14. Let γ, P and v be defined as in (4.16), (4.17) and (4.18). For any positive
integer r, we have

ζK/F,R(σa, 1− r) = Ψ(1, γ)(P r−1, v).

Proof. In view of the proof of Theorem 4.1 (and maintaining the notation there), we must
prove the analogue of equations (4.21)–(4.22) for the cocycle Ψ, namely

(2πi)2rΨ(1, γ)(P r−1, v) = Nfr−1Dr−1/2((r − 1)!)2ζ(P ∗, γ∗, v, r). (4.71)

Here the right side was defined in (4.23) for r > 2 and in (4.25) for r = 1.
Now

(2πi)2rΨ(1, γ)(P r−1, v) = lim
t→∞

∑′

z∈Z2

|Q(z)|<t

ψ(1, γ)(P r−1, z)e(〈z, v〉). (4.72)

Let us choose Q = P ∗ in this limit; this choice implies that the region |Q(z)| < t is preserved
under the right action of γ on the row vectors R2. Furthermore, since γv ≡ v (mod Z2),
the value of e(〈z, v〉) is preserved under this action. We therefore let Dt denote a set of
representatives for the right action of γ on {z ∈ Z2 − {0} : |P ∗(z)| < t}, and write the sum
in (4.72) as ∑

z∈Dt

e(〈z, v〉)
∞∑

k=−∞

ψ(1, γ)(P r−1, zγk). (4.73)
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Using the cocycle properties (4.68) and (4.69) of ψ and the fact that γtP = P , the inner
sum in (4.73) can be recognized as the limit as N →∞ of a telescoping sum:

N∑
k=−N+1

ψ(1, γ)(P r−1, zγk) =
N∑

k=−N+1

ψ(γ−k, γ−k+1)((γ−k)tP r−1, z)

=
N∑

k=−N+1

ψ(γ−k, γ−k+1)(P r−1, z)

= ψ(γ−N , γN)(P, z). (4.74)

Let τn denote the first column of γn. For z fixed, it is clear that τN and τ−N are not orthogonal
to z for N large enough (in fact, 〈z, τn〉 = 0 for at most one value of n). Therefore, if we let
αN denote the matrix with columns (τ−N , τN), then the right side of (4.74) may be written
f(αN)(P, z). Now we use the two properties of the function f noted earlier. One checks that

τ−N ·
εN

w1

=

(
w∗1
w∗2

)
+
ε2Nw1

w1

(
w∗1
w∗2

)
, (4.75)

τN ·
εN

w1

=

(
w∗1
w∗2

)
+
ε2Nw1

w1

(
w∗1
w∗2

)
. (4.76)

Since the function f is invariant under scaling of columns, we replace αN by the matrix
whose columns are given by the expressions on the right in (4.75), (4.76). By the continuity
property of f , we see that the limit as N →∞ is simply f(W )(P, z) since 0 < ε < 1. Using
Lemma 4.13, we obtain that the value of (4.73) is equal to

((r − 1)!)2 Nfr−1Dr−1/2
∑
z∈Dt

e(〈z, v〉)
P ∗(z)r

. (4.77)

For r > 1, the sum in (4.77) converges absolutely over all z ∈ (Z2 − {0})/γ, so the limit as
t→∞ is equal to ζ(P ∗, γ∗, v, r) by definition (see (4.23)). For r = 1, write ζ(P ∗, γ∗, v, 1, s)
(see (4.24)) as a Dirichlet series

∑∞
n=1 ann

−s. By definition of Dt, the limit as t→∞ of the
sum in (4.77) is the (only conditionally convergent) sum

∑∞
n=1 an; meanwhile ζ(P ∗, γ∗, v, 1)

is defined to be the value of the analytic continuation of
∑∞

n=1 ann
−s at s = 0. By the version

of Abel’s Theorem for Dirichlet series (see [25]), these are equal. Therefore we obtain the
desired equality (4.71) for all positive integers r. The proof now follows the remainder of the
proof of Theorem 4.1.

4.3 Integrality of the `-smoothed cocycle Ψ`

In this section, we prove the integrality property stated in Theorem 4.4 for the `-smoothed
cocycle Ψ`, using Szcech’s definition of Ψ. The idea of `-smoothing Sczech’s cocycle was
introduced in [5]; the contents of the rest of this chapter (except Section 4.5.1) are drawn
from that paper.

Recall the definition of the integral subspace H1(Γ0(`),M∨
` )int given in (4.39).
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Theorem 4.15. We have

〈[Ψ`], [C]〉 ∈ Z[1
`
]

for any [C] ∈ H1(Γ,M∨
` )int.

Theorem 4.15 will be proven over the next three sections. As noted in our discussion
of the modular symbol definition of Ψ` in Section 4.1.6, Theorems 4.14 and 4.15 imply the
integrality result for partial zeta functions stated in Theorem 4.6. We restate the result
below.

Theorem 4.16. For integers r ≥ 1, we have

ζK/F,R,T (σa, 1− r) = Ψ`(1, γ)(P r−1, v)

= 〈[Ψ`], [CP,v,r]〉 ∈ Z[1
`
].

4.3.1 A decomposition of the `-smoothed Dedekind sum

We will prove Theorem 4.15 using the formula for Ψ` given in Theorem 4.10 by decomposing
D `
r,s(ρ, v) into a sum of terms that individually share an analogous integrality property. To

this end, fix a linear map L ∈ Hom(Z2,F`) such that L
(

1
0

)
, L
(

0
1

)
are nonzero. For x ∈ R2−Z2,

z ∈ F`, and positive integers r, s, define

BL,z
r,s (x) := Br,s(x)− `r+s−1

∑
y∈F 2

`
L(y)=z

Br,s

(
x+ y

`

)
, (4.78)

where the summation runs over all y ∈ F 2
` such that L(y) = z. Note that BL,z

r,s depends on
x mod `Z2 rather than mod Z2, since the summation over y is restricted. It satisfies the
following distribution relation for integers N relatively prime to `:

BL,Nz
r,s (x) = N r+s−2

∑
k∈(`Z/`NZ)2

BL,z
r,s

(
x+ k

N

)
. (4.79)

As in the previous section, consider A1, A2 ∈ Γ0(`) and let ρ denote the matrix consisting
of the first columns of A1, A2. We assume that det(ρ) 6= 0 since otherwise D `

r,s(ρ, v) = 0.
Recall the notation ρ` = π``

−1ρ. Let R denote the first row of ρ and define L(y) = 〈R, y〉
(mod `). Our desired decomposition is:

Lemma 4.17. Let {x = (x1, x2)} ⊂ Z2 denote a set of representatives for Z2/ρ`Z
2. We

have

D `
r,s(ρ, v) = sgn(det(ρ))

∑
x

BL,−x1
r,s (ρ−1

` (x+ π`v)). (4.80)

Remark 4.18. One easily checks that the summand in (4.80) is independent of the choice
of representative x ∈ Z2 for each class in Z2/ρ`Z

2.
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Proof. The map (x, y) 7→ z = π−1
` x + `−1ρy induces a bijection between Z2/ρ`Z

2 × Z2/`Z2

and π−1
` Z2/ρZ2. Furthermore, under this bijection

L(y) ≡ −x1 (mod `)⇐⇒ z ∈ Z2.

The result follows immediately from the definitions (4.60) and (4.78).

From Theorem 4.10 and Lemma 4.17, we find:

Proposition 4.19. We have

Ψ`(A1, A2)(P, v) = sgn(det(ρ))
d∑
r=0

Pr(ρ)
∑

x∈Z2/ρ`Z2

BL,−x1
1+r,1+d−r(ρ

−1
` (x+ π`v)). (4.81)

In the next section, we demonstrate an integrality property of the individual terms in the
sum over x in (4.81) when d = 0. The integrality of Ψ` in general will follow by bootstrapping
from this base case.

4.3.2 The case d = 0

The following “cyclotomic Dedekind sum” attached to a real number x will play an important
role in our computations. Define

Bexp
1 (x, r) =

∑̀
m=1

e
(rm
`

)
B̃1

(
x+m

`

)
(4.82)

for any x ∈ R and r ∈ F×` . The periodic Bernoulli polynomial B̃1 was defined in (4.5). We
leave the proof of the following lemma as an exercise.

Lemma 4.20. The value of the cyclotomic Dedekind sum is given by

Bexp
1 (x, r) =

e(−r[x]
`

)

e( r
`
)− 1

+
δx
2
e
(
−rx
`

)
, (4.83)

where δx = 1 if x ∈ Z and δx = 0 otherwise.

The following is the aforementioned integrality property of the individual terms in (4.81)
when d = 0.

Proposition 4.21. Let x ∈ Q2, x 6∈ Z2. The quantity BL,z
1,1 (x) lies in 1

2
Z[1

`
], and lies in 1

2
Z

if ` > 3. Furthermore, these statements both hold without the factor 1
2

if neither coordinate
of x is an integer.

Proof. This proof follows the argument of [11, Sect. 6.1]. We begin by relaxing the restricted
summation. Since the map

y 7→ 1

`

`−1∑
k=0

e

(
kL(y)

`

)
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is the characteristic function of the kernel of L, we obtain

BL,z
r,s (x) = −

`−1∑
k=1

∑
y∈F 2

`

e

(
k(L(y)− z)

`

)
Br,s

(
x+ y

`

)
. (4.84)

Note that the term k = 0 cancels the leading term of BL,z
r,s using the distribution relation for

Br,s. Write L
(
y1
y2

)
= a1y1 + a2y2. Specializing to (r, s) = (1, 1), the sum (4.84) decomposes

as

−
`−1∑
k=1

e

(
−kz
`

) ∑̀
y1,y2=1

2∏
j=1

e

(
kajyj
`

)
B̃1

(
xj + yj

`

)
.

Since each aj is non-zero modulo ` by assumption, we can use Lemma 4.20 twice to obtain

BL,z
1,1 (x) = −

`−1∑
k=1

e

(
−kz
`

) 2∏
j=1

(
e(−kaj [xj ]

`
)

e(
kaj
`

)− 1
+
δxj
2
e

(
−kajxj

`

))

= − TrQ(µ`)/Q

(
e(−z−L([x])

`
)

(e(a1
`

)− 1)(e(a2
`

)− 1)

)
(4.85)

− δx2
2

TrQ(µ`)/Q

(
e(−z−L([x])

`
)

e(a1
`

)− 1

)
− δx1

2
TrQ(µ`)/Q

(
e(−z−L([x])

`
)

e(a2
`

)− 1

)
. (4.86)

Note that there is no “fourth term” since x 6∈ Z2, so δx1δx2 = 0. The traces in (4.85) and
(4.86) clearly lie in Z[1

`
]. Furthermore, since ζ` − 1 has `-adic valuation 1/(` − 1) for any

primitive `-th root of unity ζ`, the expression in (4.85) has denominator at most `
2
`−1 and

the traces in (4.86) have denominator at most `
1
`−1 .

4.3.3 Proof of Theorem 4.15

We are now ready to complete the proof of Theorem 4.15. If

C = ([A1]− [A2])⊗ ϕ1,v ∈ IΓ ⊗M∨
`

with A−1
1 v = A−1

2 v, then the desired result

〈[Ψ`], [C]〉 = Ψ`(A1, A2)(1, v) ∈ Z[1
`
]

follows, up to a factor of 1/2, from Propositions 4.19 and 4.21. We will first show how to deal
with the nuisance factor 1/2. Then we will show how to generalize from P = 1 to general
P . The first problem is dealt with using the following lemmas; the main idea is to represent
any class in H1(Γ0(`),M∨

` )int with a cycle such that in all applications of Proposition 4.21,
none of the coordinates of x is integral.
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Lemma 4.22. Any class [C] ∈ H1(Γ,M∨
` )int has a representative C that can be expressed as

a linear combination of cycles of the form

([1]− [γ])⊗ ϕP,v (4.87)

satisfying conditions (4.38) and (4.39), and such that π`v ∈ V has neither coordinate integral.

Proof. By definition, a class [C] ∈ H1(Γ,M∨
` )int has a representative C that may be expressed

as a linear combination of cycles

([A1]− [A2])⊗ ϕP,v
satisfying (4.38) and (4.39). This cycle is equivalent modulo the action of Γ0(`) to

([1]− [γ])⊗ ϕAt1P,A−1
1 v (4.88)

where γ = A−1
1 A2. The element (4.88) still satisfies (4.38) and (4.39). Let us therefore

relabel (At1P,A
−1
1 v) as (P, v), with γ satisfing γtP = P and γ−1v = v. The lemma is proven

unless one of the coordinates of π`v is integral. To handle this situation we use a trick. Note
that for any g ∈ Γ0(`), we have

([1]− [g])⊗ ϕP,v = ([γ]− [γg])⊗ ϕP,v
in (IΓ0(`) ⊗M∨

` )Γ0(`), and hence

([1]− [γ])⊗ ϕP,v = ([g]− [γg])⊗ ϕP,v
= [1]− [g−1γg]⊗ ϕgtP,g−1v. (4.89)

The right side of (4.89) satisfies (4.38) and (4.39), and we will show that it is possible to
choose g such that g−1v has neither coordinate integral. We are given that v ∈ V`, so either

`v1 or v2 is not integral. If v2 is not integral, then g =

(
1 0
1 1

)
has the desired property, and

if `v1 is not integral, then g =

(
1 0
` 1

)
has the desired property.

Lemma 4.23. Consider a cycle
([1]− [γ])⊗ ϕP,v

satisfying conditions (4.38) and (4.39), and such that π`v ∈ V has neither coordinate integral.
Then neither coordinate of y is integral for all y ∈ ρ−1

` (Z2 + π`v).

Here, as usual, ρ` denotes the matrix containing the first columns of the matrices 1 and
π`γπ

−1
` .

Proof. If γ =

(
a b
c` d

)
, then ρ` =

(
1 a
0 c

)
. We have π`v ∈ ρ`(y)+Z2. In particular, v2 ≡ cy2

(mod Z), so y2 6∈ Z. Write γ′ =

(
a b`
c d

)
= π`γπ

−1
` . Since γ′(π`v) ≡ π`v (mod Z2), it follows

that π`v ∈ (γ′)−1ρ`(v) + Z2. Since (γ′)−1ρ` =

(
d 1
−c 0

)
, we find v2 ≡ −cy1 (mod Z), so

y1 6∈ Z.
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We can now prove Theorem 4.3.3 in the case P = 1. Lemmas 4.22 and 4.23 allow us to
consider cycles of the form C = [1] − [γ] ⊗ ϕ1,v such that for all y ∈ ρ−1

` (Z2 + π`v), neither
coordinate of y is integral. Propositions 4.19 and 4.21 then yield:

Proposition 4.24. Given a cycle

C = ([A1]− [A2])⊗ ϕ1,v ∈ IΓ ⊗M∨
` ,

we have that
〈[Ψ`], [C]〉 = Ψ`(A1, A2)(1, v)

lies in Z[1
`
], and in fact lies in Z if ` > 3.

Now we move on to the generalization from P = 1 to P of larger degree. We will show
that for [C] ∈ H1(Γ,M∨

` )int, the value 〈[Ψ`], [C]〉 lies in Zp for each prime p 6= `.

Proposition 4.25. Let x ∈ Q2 and let p 6= ` be a prime number. Let 0 ≤ r ≤ d be integers.
There exists an integer ε depending only on d, ` and the denominator of x, such that for all
integers M ≥ ε we have the following congruence between rational numbers:

pMdr!(d− r)!BL,z
1+r,1+d−r

(
x

pM

)
≡ BL,z

1,1

(
x

pM

)
xr1x

d−r
2

`d
mod pM−εZp. (4.90)

Before proving Proposition 4.25, we show how it enables the proof of Theorem 4.15.

Proof of Theorem 4.15. Lemmas 4.22 and 4.23 allow us to consider cycles of the form C =
[1] − [γ] ⊗ ϕP,v satisfying (4.38) and (4.39), such that for all y ∈ ρ−1

` (Z2 + π`v), neither
coordinate of y is integral. We recall Proposition 4.19:

〈[Ψ`], [C]〉 = Ψ`(1, γ)(P, v)

= sgn(det(ρ))
d∑
r=0

Pr(ρ)
∑

x∈Z2/ρ`Z2

BL,−x1
1+r,1+d−r(ρ

−1
` (x+ π`v)). (4.91)

For each x in the sum in (4.91) we let y = ρ−1
` (x+ π`v) and note that y has the property

1
`
ρ(y) ∈ v + 1

`
Z⊕ Zn−1. (4.92)

Fix a prime p 6= `. For each y we let ε be as in Proposition 4.25 and fix a positive integer
M > ε+ordp(d!). Applying the distribution relation (4.79) we replace the term BL,−x1

1+r,1+d−r(y)
in (4.91) with

pMd
∑

k∈(`Z/`pMZ)2

BL,z
1+r,1+d−r

(
y + k

pM

)
, (4.93)

where z ≡ −p−Mx1 (mod `). By Proposition 4.25 and the choice of M , the quantity in
(4.93) is congruent modulo Zp to

1

r!(d− r)!
∑

k∈(`Z/`pMZ)2

BL,z
1,1

(
y + k

pM

)
(y1 + k1)r(y2 + k2)d−r

`d
.
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Plugging this expression into (4.91), we note that each coefficient Pr(ρ)
r!(d−r)!`d in lies in Zp, and

hence Ψ`(1, γ)(P, v) is congruent modulo Zp to

±
∑
x

∑
k∈(`Z/`pMZ)2

BL,z
1,1

(
y + k

pM

) d∑
r=0

Pr(σ)

r!(d− r)!
· (y1 + k1)r(y2 + k2)d−r

`d
. (4.94)

By the definition (4.47), the sum over r in (4.94) is equal to P
(
ρ(y+k)

`

)
, which by (4.92) and

the property
P (v + 1

`
Z⊕ Z) ⊂ Z

[
1
`

]
given in (4.39) lies in Zp. Therefore, by Proposition 4.21, each term in (4.94) lies in Zp, and
the theorem is proven.

Proof of Proposition 4.25. As in the classical Kubota–Leopoldt construction of p-adic L-
functions over Q, the proof relies on the fact that the Bernoulli polynomial Bk(x) begins

Bk(x) = xk − k

2
xk−1 + · · · . (4.95)

We recall equation (4.84):

BL,z
1+r,1+d−r(x) = −

`−1∑
k=1

∑
y∈F 2

`

e

(
k(L(y)− z)

`

)
B1+r,1+d−r

(
x+ y

`

)
. (4.96)

At the expense of altering z, we may translate x by an element of pMZn and assume
that x/pM belongs to [0, 1)2. Furthermore, for each class in F 2

` we choose the representative
y ∈ Z2 with 0 ≤ yj ≤ `− 1. Suppose that r ≥ 1. Equation (4.95) yields

pMrB1+r

( x1
pM

+ y1

`

)
≡ p−M

(x1

`

)1+r

+ (1 + r)
(x1

`

)r (y1

`
− 1

2

)
mod pM−εZp,

where ε depends only on r, ` and the power of p in the denominator of x1. Write L
(
y1
y2

)
=

a1y1 + a2y2, and multiply the previous congruence by e(ka1y1
`

). Summing over all 0 ≤ y1 ≤
`− 1, the leading term of the right side vanishes and we obtain

pMr
∑
y1∈F`

e

(
ka1y1

`

)
B̃1+r

( x1
pM

+ y1

`

)
≡

(1 + r)
(x1

`

)r ∑
y1∈F`

e

(
ka1y1

`

)
B̃1

( x1
pM

+ y1

`

)
mod pM−εZp[ζ`],

(4.97)

with both sides lying in p−εZp[ζ`]. Of course, if r = 0 then this congruence holds tautolog-
ically. Let us now multiply this congruence by the analogous one with r replaced by d − r
and (x1, y1) by (x2, y2).

Multiplying by −e(−kz/`) and summing over k = 1, . . . , ` − 1 gives the desired result
by using (4.96) on both sides of the congruence (after dividing by (1 + r)(1 + d − r) and
increasing ε accordingly).
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4.4 Applications to Stark’s conjecture

In this section we interpret the cocycle Ψ` in terms of p-adic measures and use this perspective
to prove the existence of p-adic partial zeta functions of real quadratic fields. We then use
this formalism to present a conjectural formula for Stark units in the case TRp.

4.4.1 A cocycle of measures

Fix a prime p 6= `. Let A be a subgroup of Qp that is bounded in the p-adic topology (i.e.
A ⊂ 1

pn
Zp for some integer n). Let Y be a compact open subset of Q2

p. We define an A-valued

measure on Y to be an assignment µ : U 7→ µ(U) ∈ A for each compact open subset U ⊂ Y
such that µ(U ∪V ) = µ(U) +µ(V ) for disjoint U and V . If E is a finite extension of Qp and
f : Y → E is a continuous function, then we can define the integral of f with respect to µ
via the usual Riemann sum process as follows. Since Y is a compact open subset of Q2

p, it
can be written for n large enough as a disjoint union

Y =

yn⊔
i=1

ai,n + pnZ2
p.

Define ∫
Y

f(x)dµ(x) := lim
n→∞

yn∑
i=1

f(ai)µ(ai + pnZ2
p) ∈ E. (4.98)

Exercise: Prove that the limit in (4.98) converges by showing that the sequence of partial
sums is Cauchy, and show that the limit does not depend on the “test points” ai,n ∈ Y
chosen in the open sets ai,n + pnZ2

p.
Let M(Y) denote the Qp-vector space of measures on Y that take values in some bounded

subgroup of Qp. Given a µ ∈ M(Y) and a matrix γ ∈ SL2(Zp), we obtain a measure
γµ ∈M(γY) via (γµ)(U) := µ(γ−1U).

Given A1, A2 ∈ Γ0(`) and v ∈ V`, we define a 1
2
Z[1

`
]-valued measure µ`(A1, A2)(v) on

Yv := v + Z2
p ⊂ Q2

p

as follows. Let ρ denote the matrix whose columns are the first columns of A1, A2. If
det(ρ) = 0, then µ`(A1, A2)(v) is the 0 measure. Suppose that det(ρ) 6= 0. A vector a ∈ Z2

and a nonnegative integer r give rise to the compact open subset

a+ prZ2
p ⊂ Z2

p.

These sets form a basis of compact open subsets of Z2
p, and hence their translates by v form

a basis of compact open subsets of Yv. We define µ` by applying Ψ` with the constant
polynomial P = 1:

µ(A1, A2)(v)(v + a+ prZ2
p) = Ψ`(A1, A2)

(
1,
v + a

pr

)
∈ 1

2
Z[1

`
] ⊂ 1

2
Zp. (4.99)
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It is easily checked that this assignment is well-defined, and that the distribution relation
for Ψ` implies the necessary additivity property for µ`.

Let M`,p denote the space of functions that assigns to each v ∈ V` a measure α(v) ∈
M(Yv), such that the distribution relation∑

w∈( 1
N
Z/Z)2

α
( v
N

+ w
)

= α(v)

is satisfied for each positive integer N relatively prime to p. Exercise: show that µ`(A1, A2) ∈
M`,p.

Proposition 4.26. The function µ` : Γ0(`)2 →M`,p is a homogeneous 1-cocycle.

Proposition 4.26 follows directly from the fact that Ψ` is a cocycle; we leave the proof
as an exercise. The following theorem shows that the cocycle Ψ` can be recovered from the
cocycle of measures µ`; in other words, the cocycle Ψ` specialized to P = 1 determines its
value on all P ∈ P .

Theorem 4.27. For any P ∈ P we have

Ψ`(A1, A2)(P, v) =

∫
Yv

P (x) dµ`(A1, A2)(v)(x). (4.100)

Proof. It suffices to prove the result when P is homogeneous of degree d. We follow closely
the proof of Theorem 4.15. It was shown there (see (4.94)) that there exists an integer ε
such that for each positive integer M ≥ ε, the quantity Ψ`(A1, A2)(P, v) is congruent to

±
∑
x

∑
k∈(`Z/`pMZ)2

BL,−p−Mx1
1,1

(
y + k

pM

)
P

(
ρ(y + k)

`

)
(4.101)

modulo pM−εZp. Here x sums over representatives in Z2 for Z2/ρ`Z
2 and y = ρ−1

` x+ ρ−1`v.
The ± sign is sgn(det(ρ)). The expression (4.101) is simplified with a change of variables.
Let j run over arbitrary representatives for Z2/pMZ2 (i.e. not necessarily divisible by `) such
that j ≡ k (mod pM), and let u = x+ ρ`(j); the expression (4.101) is congruent modulo pM

to:

±
∑

u∈Z2/pMρ`Z2

BL,−p−Mu1
1,1

(
ρ−1
` (u) + σ−1`v

pM

)
P (π−1

` u+ v). (4.102)

Let us meanwhile evaluate the Riemann sums approximating the integral on the right
side of (4.100). There is a δ, depending on the powers of p in the denominator of P (v), such
that for M large we have∫

Yv

P (x) dµ(x) ≡
∑

j∈(Z/pMZ)2

P (v + j)µ(v + j + pMZ2
p) (mod pM−δZp)

=
∑

j∈(Z/pMZ)2

P (v + j)D `
1,1

(
ρ,
v + j

pM

)
. (4.103)



82 CHAPTER 4. EISENSTEIN COCYCLES AND APPLICATIONS TO CASE TRP

As j runs over (Z/pMZ)2, let k run over representatives for Z2/pMZ2 such that k ≡ π`j.
An argument similar to the proof of Lemma 4.17 shows that

D `
1,1

(
ρ,
v + j

pM

)
=

∑
z∈Z2/ρ`Z2

BL,−z1−p−Mk
1,1

(
ρ−1
` (z) +

ρ−1
` (k) + ρ−1`v

pM

)
.

Substituting this expression into (4.103) and using the change of variables u = pMz+k shows
that the integral is congruent to (4.102) modulo pM−max{ε,δ}. Taking the limit as M → ∞,
the result follows.

As before, it is convenient to express our results in terms of the natural pairings between
cohomology and homology. LetM∨

`,p denote the Zp-dual ofM`,p, which is endowed with the
dual action of Γ0(`). As in Section 4.1.5, there is a natural pairing

H1(Γ0(`),M`,p)×H1(Γ0(`),M∨
`,p)→ Zp

given by 〈
[µ],
[∑

([A1]− [A2])⊗ ϕ
]〉

=
∑

ϕ(µ(A1, A2)).

An element v ∈ V` and a continuous function f: Yv → Zp and a give rise to an element
ϕf,v ∈M∨

`,p defined by

ϕf,v(α) =

∫
Yv

f(x)dµ(x) where µ = α(v). (4.104)

If a polynomial P ∈ P and v ∈ V` satisfy the integrality condition (4.39), then P viewed as
a continuous function on Yv has image contained in Zp. Combined with (4.104) this induces
a natural map

H1(Γ0(`),M∨
` )int −→ H1(Γ0(`),M∨

`,p). (4.105)

([A1]− [A2])⊗ ϕP,v 7−→ ([A1]− [A2])⊗ ϕP,v.

Theorem 4.27 implies that for [C] ∈ H1(Γ0(`),M∨
` )int, we have

〈[Ψ`], [C]〉 = 〈[µ`], [D]〉, (4.106)

where [D] denotes the image of [C] under (4.105).

4.4.2 p-adic zeta functions

We now return to the setting of a real quadratic field F . Let a be an integral ideal of F
and let c be an ideal of norm ` such that (ac, f) = 1. Let S and T be finite sets of primes
of F as before, and assume that S contains all the primes of F lying above p. We will use
the p-adic measures defined above to construct the p-adic zeta functions associated to the
extension K/F .
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Theorem 4.28. Fix K/F, S, T, and p as above. Let σ ∈ G = Gal(K/F ). There exists a
unique Zp-valued analytic function ζK/F,S,T,p(σ, s) of the p-adic variable s ∈ W such that

ζK/F,S,T,p(σ, 1− r) = ζK/F,S,T (σ, 1− r). (4.107)

for all positive integers r.

The special values of the classical zeta function on the right side of (4.107) lie in Z[1
`
] ⊂ Zp

by Theorem 4.6.

Proof. First we note that it suffices to consider the case where f is divisible by all primes of
F above p. Indeed, if we let g denote the least common multiple of f and the primes dividing
p, then the p-adic zeta functions for K/F and Kg/F are related as follows:

ζK/F,S,T,p(σ, s) =
∑

τ∈Gal(Kg/F )

τ |K=σ

ζKg/F,S,T,p(τ, s). (4.108)

The analogous equation for the classical partial zeta functions follows from the condition
that S contains all the primes above p.

Therefore, suppose that f is divisible by all primes of F above p. Fix a relatively prime to
f and p such that σa = σ. Let P, v, and γ be as in (4.40)–(4.41). For any x ∈ Zn the quantity
P (v+ x) is the norm of an integral ideal of F relatively prime to f. Since f is divisible by all
the primes above p, this quantity is an integer relatively prime to p. By the continuity of P ,
we find that

P (v + x) ∈ Z×p

for all x ∈ Z2
p.

We define a p-adic analytic Zp-valued function on Yv ×W :

f(x, s) = P (x)−s.

The function f in turn yields a p-adic analytic family of cycles

Ds := ([1]− [γ])⊗ ϕf(−,s),v

giving classes [Ds] ∈ H1(Γ0(`),M∨
`,p).We define an analytic function ζK/F,S,T,p(σ, s) :W → Zp

by:

ζK/F,S,T,p(σ, s) = 〈[µ`], [Ds]〉 (4.109)

=

∫
Yv

P (x)−sdµ(A1, A2)(v)(x). (4.110)

If r is a positive integer, then the image of CP,v,r = ([A1] − [A2]) ⊗ ϕP r−1,v under (4.105) is
D1−r. Therefore, we find from (4.106):

ζK/F,S,T,p(σ, 1− r) = 〈[µ`], [D1−r]〉
= 〈[Ψ`], [CP,v,r]〉
= ζK/F,S,T (σ, 1− r).

This is the desired interpolation property of our p-adic zeta function.
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Note that the meromorphic function ζK/F,S,p :W → Qp mentioned in (2.5) can be defined
by choosing the set T = {c} such that c splits completely in K, and letting

ζK/F,S,p(σ, s) =
ζK/F,S,T,p(σ, s)

(1− Nc1−s)
. (4.111)

Exercise: Show that ζK/F,S,p has the desired interpolation property (2.6) and that (4.111) is
independent of the choice of T .

4.4.3 A conjectural formula for Stark units

We finally come to the climax of our discussion of the Eisenstein cocycle—a conjectural
formula for Stark units in case TRp. Recall that K is the narrow ray class field of conductor
f of F . To simplify notation, we assume that the rational prime p is inert in F , and satisfies
p ≡ 1 (mod f). This implies that p splits completely in K. The general case—in which p is
replaced by an arbitrary prime ideal p and K is replaced by its maximal subfield in which p
splits—is similar, but notationally more complicated.

Denote by X := Z2
p − pZ2

p the set of primitive vectors in Z2
p.

Proposition 4.29. With notation as above, we have

ζK/F,S,T,p(σa, s) =

∫
X

P (x)−sdµ`(1, γ)(v)(x). (4.112)

Proof. It is possible to prove this directly from our construction of ζK/F,S,T,p(σa, s) using
(4.108). However, we sketch a shorter argument. Let R = S−{p}. Since p splits completely
in K, we have

ζK/F,S,T (σa, s) = ζK/F,R,T (σa, s)(1− p−2s) (4.113)

for s ∈ C. Let s = 1− r, with r a positive integer. We will express the zeta value in (4.113)
as an integral against the measure µ using Theorems 4.16 and 4.27. Note that Yv = Z2

p

since (f, p) = 1. We have:

ζK/F,R,T (σa, s) =

∫
Z2
p

P (x)−sdµ`(1, γ)(v)(x) (4.114)

and

p−2sζK/F,R,T (σa, s) =

∫
Z2
p

P (px)−sdµ`(1, γ)(v)(x)

=

∫
pZ2

p

P (x)−sdµ`(1, γ)(pv)(x)

=

∫
pZ2

p

P (x)−sdµ`(1, γ)(v)(x). (4.115)
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The last equality uses the fact that pv ≡ v (mod Z2), which holds since p ≡ 1 (mod f).
Combining (4.113)–(4.115) we find

ζK/F,S,T (σa, s) =

∫
X

P (x)−sdµ`(1, γ)(v)(x). (4.116)

Now the left and right sides of (4.112) are continuous functions on W that agree with the
left and right sides of (4.116) on the dense set of s = 1− r, for positive integers r. Therefore
they agree as functions on W .

Note that by specializing (4.112) to s = 0, one finds that µ(1, γ)(v) has total measure 0
when restricted to X:

µ(1, γ)(v)(X) = 0. (4.117)

(This is easy to prove directly as well.) Writing (4.112) using the definition of P , we have:

ζK/F,S,T,p(σa, s) = Na−s
∫
X

NFp/Qp(x1w1 + x2w2)−sdµ`(1, γ)(v)(x).

Taking the derivative with respect to s and evaluating at s = 0, we obtain

ζ ′K/F,S,T,p(σa, 0) = −
∫
X

logp NFp/Qp(x1w1 + x2w2)dµ`(1, γ)(v)(x). (4.118)

Let us fix a prime P of K above p. Gross’s Conjecture 2.3 states that the left side of (4.118)
is equal to − logp NKP/Qp(u

σa
T ), where uT is the Brumer–Stark–Tate unit associated to the

data (K/F, S, T, p,P):

− logp NKP/Qp(u
σa
T )

?
= −

∫
X

logp NFp/Qp(x1w1 + x2w2)dµ`(1, γ)(v)(x). (4.119)

It is natural to try to refine Gross’s conjecture by simply removing the norms from (4.119).
We arrive at:

Conjecture 4.30 (Logarithmic form). We have

logp(u
σa
T ) =

∫
X

logp(x1w1 + x2w2)dµ`(1, γ)(v)(x) ∈ OF,p.

Here OF,p denotes the p-adic completion of OF , and logp : F×p → OF,p is the Iwawasa
branch of the p-adic logarithm (logp(p) = 0). The p-unit uσaT is viewed as an element of F×p
via uσaT ∈ K ⊂ KP

∼= Fp.
Conjecture 4.30 is a true strengthening of Gross’s Conjecture 2.3. Whereas Gross’s

formula for uσaT has an ambiguity of multiplication by elements of norm 1 in O×F,p, Conjec-

ture 4.30 only has a finite ambiguity of the roots of unity in O×F,p. (Recall that the p-adic
valuation of uσaT is specified by the Brumer–Stark–Tate conjecture.) Gross’s conjecture is an
equality in Zp, whereas Conjecture 4.30 is an equality in the quadratic unramified extension
OF,p.
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We now remove the logarithms from Conjecture 4.30 in order to present an exact formula
for uσaT . Suppose that ` > 3. Using Lemma 4.22, let us assume that neither coordinate of
v ∈ V` is integral. Following the proof of Lemma 4.23 one finds that neither coordinate of y
is integral for y ∈ ρ−1

` (Z2 + π`(
v+a
pr

)) when a ∈ Z2. By Propositions 4.19 and 4.21, it follows
that

µ(1, γ)(v)(v + a+ prZ2
p) = Ψ`(1, γ)

(
1,
v + a

pr

)
∈ Z, (4.120)

i.e. µ(1, γ)(v) is a Z-valued measure on X.
Let Op be the ring of integers in an extension of Qp. Given a Z-valued measure µ on X

and a continuous function f: X→ O×p , there is a multiplicative integral defined as follows:

×
∫
X

f(x)dµ(x) := lim
r→∞

∏
a∈(Z/prZ)2

p-a

f(a)µ(a+prZ2
p) ∈ O×p .

Here f(a) denotes the value of f at any test point in the open set a+prZ2
p. The multiplicative

integral and the additive integral of (4.98) are related by the formula

logp

(
×
∫
X

f(x)dµ(x)

)
=

∫
X

logp(f(x))dµ(x).

The following conjecture refines Conjecture 4.30.

Conjecture 4.31 (Multiplicative form). The element

uT (a) := pζK/F,R,T (σa,0) ×
∫
X

(x1w1 + x2w2)dµ`(1, γ)(v)(x) ∈ F×p (4.121)

is an element of K ⊂ KP
∼= Fp. Furthermore, uT (a) ∈ Up,S,T (K), and we have the “Shimura

Reciprocity Law:”
uT (a)σb = uT (ab).

Note that Conjecture 4.31 is self-contained and makes no reference to the conjectures of
Brumer–Stark–Tate or Gross. In fact, the steps we used above to motivate the statement of
Conjecture 4.31 can be easily reversed to show that this conjecture implies Conjectures 1.6
and 2.3, with uσaT = uT (a). We leave as an exercise the proof of the less obvious fact that
Conjecture 4.31 implies Gross’s strong Conjecture 2.1 (see [11, Theorem 3.22]).

We conclude this chapter by formulating Conjecture 4.31 in terms of pairings between
cohomology and homology. Let M(X; Z) denote the Γ-module of Z-valued measures on X,
and let M0(X; Z) denote the submodule of measures with total measure zero. Let C(X)
denote the Γ-module of continuous functions X → O×p , and let C0(X) denote the quotient
of C(X) by the subgroup of constant functions. There is a natural pairing:

M0(X; Z)× C0(X) −→ O×p (4.122)

(µ, f) 7−→ ×
∫
X

f(x)dµ(x).
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Let H1(Γ0(`),M`,p)int denote the subgroup generated by classes [µ] such that

µ(A1, A2)(v) ∈M0(X; Z)

whenever A1, A2 ∈ Γ0(`) and v ∈ V` satisfy

A−1
1 v = A−1

2 v, pv ≡ v (mod Z).

Our work above (including the application of Lemmas 4.22 and 4.23 to pass from 1
2
Z to Z)

shows that the cohomology class [µ`] lies in H1(Γ0(`),M`,p)int.
Let V`,p = {v ∈ V` : pv ≡ v (mod Z2)}, and let N`,p denote the Γ-module of divisors on

the Γ-set C0(X)× V`,p:
N`,p := Z[C0(X)× V`,p].

To be consistent with our previous notation, we denote the element corresponding to the
pair (f, v) by ϕf,v. Let H1(Γ0(`),N`,p)int denote the subgroup of H1(Γ0(`),N`,p) generated
by cycles of the form ([A1]− [A2])⊗ ϕf,v, i.e. such simple tensors such that At1f = At2f and
A−1

1 v = A−1
2 v.

The pairing (4.122) then induces a pairing:

H1(Γ0(`),M`,p)int ×H1(Γ0(`),N`,p)int −→ O×p (4.123)

([µ], ([A1]− [A2])⊗ ϕf,v) 7−→ ×
∫
X

f(x)dµ(A1, A2)(v)(x).

Given the setting of our real quadratic field F , it is easy to check that if

f(x1, x2) := x1w1 + x2w2,

the cycle
Cf,v := ([1]− [γ])⊗ ϕf,v

defines a class [Cf,v] ∈ H1(Γ0(`),N`,p)int. The main part of this verification is the observation
that γtf = ε · f , so the functions γtf and f are equal in C0(X). We then have the following
restatement of Conjecture 4.31:

Conjecture 4.32 (Multiplicative pairing form). The element

uT (a) := pζK/F,R,T (σa,0)〈[µ`], [Cf,v]〉 ∈ F×p
is an element of K ⊂ KP

∼= Fp. Furthermore, uT (a) ∈ Up,S,T (K), and we have the “Shimura
Reciprocity Law:”

uT (a)σb = uT (ab).

4.5 General degree

The constructions of this chapter, from Sczech’s definition of the cocycle Ψ in Section 4.2
onward, generalize to degree n ≥ 2. Furthermore, in the description above we removed
{0} from (Q/Z)2 in the definition of V to simplify matters. In this section we describe the
generalization to n ≥ 2 and V := (Q/Z)n.
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4.5.1 Sczech’s construction of Ψ

Let Γ = SLn(Z). For i = 1, . . . ,m, let Qi denote a linear form in n-variables with coefficients
in R that are linearly independent over Q (in particular, all the coefficients are non-zero).
Let Q =

∏m
i=1Qi, and let Q denote the Γ-module of such products Q, with γQ(x) := Q(xγ).

In our discussion above, we considered the case m = n = 2.
For an n-tuple of matrices A = (A1, . . . , An) and an element z ∈ Zn, let σ = σ(A, z)

denote the n×n matrix whose ith column σi is the first column of the matrix Ai that is not
orthogonal to z. For a polynomial P ∈ P := Q[x1, . . . , xn], let

ψ(A)(P, z) := P (−∂z1 , . . . ,−∂zn)
det(σ)

〈z, σ1〉 · · · 〈z, σn〉
.

If P is homogenous of degree d and v ∈ V = (Q/Z)n, define

Ψ(A)(P,Q, v) :=
1

(2πi)n+d
lim
t→∞

∑′

z∈Zn
|Q(z)|<t

ψ(A)(P, z) · e(〈z, v〉).

Sczech proved that this limit exists, but its value in general depends onQ (we saw this already
in the proof of Theorem 4.7 when n = 2 and v = 0). Furthermore, its value is expressible in
finite terms as a Q-linear combination of generalized Dedekind sums. The dependence on Q
is mild—only the signs of the coefficients of Qi(xσ

−1) enter into the formula.
Next, we letM denote the Γ-module of functions P ×Q×V → Q that are distributions

in the V variable and linear in the P variable, with

(γf)(P,Q, v) := f(γtP, γ−1Q, γ−1v).

Then Ψ is a homogeneous (n− 1)-cocycle for Γ on M:

Ψ ∈ Zn−1(Γ,M).

Specializations of [Ψ] yield the classical partial zeta-values of totally real fields F of degree
n at nonpositive integers. Let a, f denote integral ideals of F that are relatively prime. Let
{w1, . . . , wn} denote a Z-basis of a−1f, and define v ∈ Qn by 1 =

∑
i viwi. Define P ∈ P and

Q ∈ Q by

P (x) = NormF/Q

(
n∑
i=1

xiwi

)
, Q(x) = NormF/Q

(
n∑
i=1

xiw
∗
i

)
,

where {w∗i } is the dual basis to {wi} with respect to the trace. Let {εi}n−1
i=1 denote a basis

for the (free abelian) group of totally positive units of O×F congruent to 1 (mod f). There is
a sign condition on the regulator of the {εi} to ensure compatibility with the orientation of
the {wi}, as in (4.13) and (4.15). Let Ai ∈ Γ denote the matrix for multiplication by εi with
respect to the basis {wj} considered as a row vector. Finally, let

A =
∑

π∈Sn−1

sgn(π)[(1, Aπ(1), Aπ(1)Aπ(2), . . . , Aπ(1)Aπ(2) · · ·Aπ(n−1))] ∈ Z[Γn].
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Let K be the narrow ray class extension of F associated to the conductor f, and let R
denote the set of infinite primes of F and the primes dividing f. Sczech proves

ζK/F,R(σa, 1− r) = Ψ(A)(P r−1, Q, v) ∈ Q

for each positive integer r.

4.5.2 `-smoothing

The integrality results obtained from `-smoothing Sczech’s cocycle Ψ and applications to-
wards the construction of p-adic zeta functions and Stark units is the topic of the work in
progress [5]. The basic results are sketched here.

Let Γ0(`) ⊂ Γ denote the congruence subgroup containing those matrices whose first
columns have every entry but the first divisible by `. Let π` denote the n × n diagonal
matrix whose first entry is ` and other diagonal entries are 1. For P homogeneous of degree
d, define

Ψ`(A)(P,Q, v) = `d
(
Ψ(π`Aπ

−1
` , π−1

` P, π`Q, π`v)− `Ψ(A,P,Q, v)
)
.

The smoothed cocycle Ψ` satisfies the following integrality property analogous to Theo-
rem 4.15:

Ψ`(A)(P,Q, v) ∈ 1

m2n
Z[1

`
]

if P ∈ Z[1
`
][x1, . . . , xn] and v satisfy

P (v + 1
`
Z⊕ Z) ⊂ Z[1

`
].

Up to the factor m2n, which we are currently trying to eliminate using arguments such as
those in Lemmas 4.22 and 4.23, this integrality property implies Theorem 4.6 of Deligne–
Ribet, Cassou–Nogues, and Barsky for the partial zeta functions of F :

ζK/F,R,T (σa, 1− r) ∈ Z[1
`
]

for positive integers r, where T = {c} for a prime of F of norm `.
The arguments of Section 4.4.3 can be generalized to define a cocycle of measures µ on

the sets Yv = v + Zn
p . The cocycle µ can in turn be used to produce the p-adic partial zeta

functions of F as in (4.110):

ζK/F,S,T,p(σa, s) :=

∫
Yv

P (x)−sdµ(A)(Q, v)(x),

where S contains all primes of F above p. Finally, we may state a conjectural formula for
Stark units in the general case TRp as in (4.30). For simplicity we assume that p is inert in
F and that p ≡ 1 (mod f). We only present the logarithmic form of the conjecture because
of the nuisance factor n2n (note m = n for our choice of Q) that prevents the definition of
Z-valued measures.

Conjecture 4.33. Let f(x) = x1w1 + · · ·+ xnwn. We have

logp(u
σa
T ) =

∫
X

logp(f(x))dµ`(A)(Q, v)(x) ∈ OF,p.
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d’Eisenstein. (French) [Arguments for the Stark units and periods of Eisenstein series]
Algebra Number Theory 2 (2008), no. 6, 655–688.

[5] P. Charollois, S. Dasgupta. An Integral Eisenstein Cocycle and Gross–Stark Units
for Totally Real Fields. In preparation.

[6] P. Colmez. Résidu en s = 1 des fonctions zêta p-adic, Invent. Math. 91 (1988), no.
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