
OVERCONVERGENT MODULAR SYMBOLS

1. Modular symbols and L-values

1.1. Introductory example. Let f be the function on the upper half-plane de-
fined by the q-expansion

f(z) = q

∞∏
n=1

(1− qn)2(1− q11n)2

with q = e2πiz. Then f ∈ S2(Γ0(11)), i.e. f is a weight two cusp form for Γ0(11).
We consider the period integrals

2πi
∫ s

r

f(z)dz

where r and s vary over P1(Q). (These are path integrals in the upper-half plane
along the semicircle connecting r to s.)

Let’s do a little numerical experiment. Randomly choose a 100 pairs of r’s and
s in Q, and compute the corresponding period integrals.1. Here are the first 10
period integrals:

1.26920930427955342168879461700... + 0.000000000000000000000000000000...i

0.000000000000000000000000000000... + 2.91763323387699045866177922600...i

0.634604652139776710844397308500... + 1.45881661693849522933088961300...i

3.17302326069888355422198654250... +−1.45881661693849522933088961300...i

1.90381395641933013253319192550... + 1.45881661693849522933088961300...i

0.000000000000000000000000000000... + 0.000000000000000000000000000000...i

1.26920930427955342168879461700... +−2.91763323387699045866177922600...i

−1.90381395641933013253319192550... + 1.45881661693849522933088961300...i

−3.17302326069888355422198654250... + 1.45881661693849522933088961300...i

3.17302326069888355422198654250... +−1.45881661693849522933088961300...i

Plotting these points in the plane gives the following picture:

1Actually, in this computation, we actually only choose pairs of rational numbers which are
Γ0(11)-equivalent.

1



2 OVERCONVERGENT MODULAR SYMBOLS

Not so random, eh? As you might guess, this collection of period integrals forms
a lattice in C. Moreover, one can explicitly write down generators of this lattice –
namely, Ω+

E and 1
2Ω+

E + Ω−E where Ω±E are the Néron periods of the elliptic curve
X0(11).

This period lattice is intimately related to the L-series of f . Namely, we have

2πi
∫ 0

i∞
f(z)dz = L(f, 1) =

1
5
· Ω+

E .

This first equality above is true much more generally.2 The spirit of the second
equality is true generally, but the presence of the factor of 1

5 is very specific to this
modular form, and in general, the exact value appearing is related to the Birch and
Swinnerton-Dyer conjecture.3

More generally the period lattice contains the information of all twists of L-
values. Namely, if χ is a Dirichlet character of conductor N , we have

(3) L(f, χ, 1) =
τ(χ)
N

∑
a mod N

χ(a) · 2πi
∫ − a

N

i∞
f(z)dz

where τ(χ) is the Gauss sum attached to χ.
This initial discussion is meant to convince you that these period integrals are

quite interesting values. We now seek for an axiomatic (and algebraic!) way to
describe them.

1.2. Modular symbols. Let ∆0 equal the collection of degree 0 divisors on P1(Q).
(To connect to the previous discussion, think of the divisor {s} − {r} as the path
in the upper-half plane connecting r to s.) We then have a map ψf from ∆0 to C
defined by

{s} − {r} 7→ 2πi
∫ s

r

f(z)dz.

Here, f is any cuspform of weight 2 on Γ a congruence subgroup. Of course, we
have only defined ψf on elements of ∆0 of the form {s} − {r}. But every element
of ∆0 is a sum of such elements, and so we extend ψf accordingly. We thus have
constructed

ψf ∈ Hom(∆0,C)

where Hom here denotes additive maps.
The modularity of the function f(z) tells us that

f

(
az + b

cz + d

)
= (cz + d)2f(z)

2Here is a heuristic argument for this equality:

2πi

Z 0

i∞
f(z)dz = 2πi

Z 0

i∞

X
n

ane
2πinzdz = 2πi

X
n

an

Z 0

i∞
e2πinzdz(1)

=
X
n

an

n
e2πinz

˛̨0
i∞dz =

X
n

an

n
= L(f, 1)(2)

However, this argument suffers from serious convergence issues.
3The reason this period integral is not a Z-multiple of Ω+

E is related to the fact that ∞ and 0

are not Γ0(11)-equivalent.
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where γ =
(
a b
c d

)
is any matrix in Γ. In particular, the change of variables u = γz =

az+b
cz+d yields following simple equality:

(4)
∫ γs

γr

f(z)dz =
∫ γs

γr

f(γz)(cz + d)−2dz =
∫ s

r

f(z)dz.

We now give an algebraic description of this symmetry of period integrals.
Namely, endow ∆0 with the structure of a left SL2(Z)-module via linear fractional
transformations and endow C with the trivial SL2(Z) action. Then equation (4)
converts into the fact that

ψf ∈ HomΓ(∆0,C)

where the subscript of Γ indicates maps which are invariant under the action of
Γ ⊆ SL2(Z); that is, maps ϕ such that ϕ(γD) = ϕ(D) for all γ ∈ Γ and all D ∈ ∆0.
We call HomΓ(∆0,C) the space of C-valued modular symbols of level Γ.

1.3. Back to Γ0(11). Returning to the example of f(z) ∈ S2(Γ0(11)), we have a
C-valued modular symbol ψf of level Γ := Γ0(11) built out of the period integrals
of f . Does the abstractly defined modular symbol space HomΓ(∆0,C) contain any
thing else other than multiples of ψf? Well, first let’s point out that HomΓ(∆0,C)
is equipped with an involution ι given by

ι(ϕ)(D) = ϕ(
(−1 0

0 1

)
D)

since
(−1 0

0 1

)
normalizes Γ. So ι breaks HomΓ(∆0,C) into plus and minus subspaces,

and we get modular symbols ψ+
f and ψ−f such that ψf = ψ+

f + ψ−f . Moreover, the
symbols ψ±f takes values which are rational multiples of Ω±E .

So is HomΓ(∆0,C) bigger than 2-dimensional? Here’s one way we can just write
down explicit modular symbols. Let ∆ = Div(P1(Q)) – i.e. we dropped the degree
zero requirement. If we can define a Γ-invariant function on ∆, then by restriction
we get an element of HomΓ(∆0,C).

What is a Γ-invariant function on ∆? Well, it’s a function constant on Γ-orbits
of ∆ – i.e. a function on the cusps of X0(11)! Since 11 is prime, there are only 2
cusps, 0 and∞, and thus there are two linear independent such functions. However,
the function which is constant on all cusps is killed after restriction. We will only
get one more dimension of modular symbols this way. Namely, we could take

ϕ : ∆→ C

by

ϕ(r) =

{
1 if r is Γ-equivalent to ∞
0 if r is Γ-equivalent to 0,

and then restricting ϕ to ∆0 then gives a (non-zero) element of HomΓ(∆0,C). (Note
that flipping 0 and∞ in the above definition just negates ϕ after restricting to ∆0.)

Okay...so now we have that HomΓ(∆0,C) is at least 3-dimensional. Any more?
Well, we can again try to write ϕ = ϕ+ +ϕ− as before. However, you should check
that ϕ− = 0, and this doesn’t yield a new modular symbol.

I’m out of ideas for making new modular symbols. Can we prove that there are
no more? Well, for starters, if we knew generators of ∆0 as a Z[Γ]-module, we
would be in great shape. (Note that we just easily determined generators of ∆ as
a Z[Γ]-module.)
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For starters, let’s at least write down a set of generators over Z (ignoring the
Γ-action). Most naively, note that the set of {s} − {r} as r and s vary over P1(Q)
generate over Z. Even better, I claim that the set of {ab }−{

c
d} for a, b, c, d satisfying(

a b
c d

)
∈ SL2(Z) generate over Z. Don’t believe me? Well note that

29

11

ff
−


0

1

ff
=


29

11

ff
−

−8

−3

ff
+


8

3

ff
−


5

2

ff
+


5

2

ff
−

−3

−1

ff
+


3

1

ff
−


2

1

ff
+


2

1

ff
−

−1

0

ff
+


1

0

ff
−


0

1

ff

(Here 1
0 just means∞.) Indeed, this is Manin’s continued fraction trick; the ratio-

nal numbers appearing between 29
11 and 0

1 are just the convergents in the continued
fraction expansion of 29

11 . This trick works generally yielding a Z-generating set of
∆0 indexed by SL2(Z). For α =

(
a b
c d

)
∈ SL2(Z), write [α] for the divisor { bd}−{

a
c }.

Now to incorporate the action of Γ. A quick computation shows that if β ∈
SL2(Z), then [βα] = β[α]. That is, multiplying on the left by β and then taking the
associated divisor is the same as first taking the associated divisor and then acting
with β by linear fractional transformations.

This simple formula tells us the following: if α1, · · · , αd are a system of right
coset representations for Γ\ SL2(Z), then [α1], · · · , [αd] are Z[Γ]-generators of ∆0.
Indeed, if [β] is one of our Z-generators of ∆0, write β = γαi for some i and some
γ ∈ Γ. Then [β] = γ · [αi]. In particular, a modular symbol is uniquely determined
by its values on the finite list of divisors [α1], · · · , [αd].

OK, let’s apply these ideas to our particular case of Γ = Γ0(11). In this example,
we would need 12 coset representations as [SL2(Z) : Γ] = 12. Hmph. That’s a large
number to start with. Let’s take a simpler example, say Γ0(2). In this case, the
index is 3 and the following are right coset representatives:

( 1 0
0 1 ) ,

(
0 −1
1 1

)
,
(

1 1
−1 0

)
(Note that two matrices represent the same right coset in Γ0(2) if their bottom
rows, thought of as elements as P1(F2), agree.) Their associated divisors are:

(5) {0} − {∞}, {−1} − {0}, {∞} − {−1}.
Are these linearly independent over Z[Γ0(2)]? Nope. Not even over Z as their sum
is 0. Any other relations? Well, note that

{−1} − {0} = −({0} − {−1}) = −({γ(−1)} − {γ(0)}) = −γ({−1} − {0}).
where γ =

(
1 −1
2 −1

)
∈ Γ0(2).

Now, let’s say we have ϕ some C-valued modular symbol of level Γ0(2). Then
ϕ is certainly determined by its values on the three divisors in (5). Moreover, by
Γ0(2)-invariance, we have

ϕ({−1} − {0}) = −ϕ(γ({−1} − {0})) = −ϕ({−1} − {0}),
and thus ϕ vanishes on {−1}−{0}. Then, since our three divisors sum to 0, we get

0 = ϕ({0} − {∞}) + ϕ({∞} − {−1}).
Therefore, the value of ϕ on {∞}− {0} determines the value of ϕ on {−1}− {∞},
and thus on all divisors. In particular, this space of modular symbols is at most
1-dimensional. The same trick of writing down a symbol on ∆ and restricting again
works, and we see that this space is exactly 1-dimensional. (Note that there are no
cuspforms of weight 2 and level Γ0(2).)

How to generalize this to the Γ0(11) case? Well, let me tell you where I got the
three divisors in (5). First note that the ideal triangle connecting ∞ to 0 to −1 is
a fundamental domain for Γ0(2). So it’s the “boundary” of this domain that gives
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rise to our 3 divisors. The fact that the three divisors sum to 0 comes from going
around the triangle. The relation involving {0} − {−1} arises from the fact that
the bottom edge of the triangle is identified with itself modulo Γ0(2) – i.e. from
the gluing data describing how to wrap the fundamental domain to get X0(2).

So for X0(11) – make a nice fundamental domain and see what happens!

1.4. Higher weight case. Now let’s take an arbitrary cusp form f in Sk(Γ) with
Γ a congruence subgroup. The relevant period integrals attached to f are of the
form ∫ s

r

f(z)zjdz

where j ranges between 0 and k−2. We should thus beef up the associated modular
symbol to encode all of these periods, and we do so by changing the space where
the symbols take values.

Namely, let Vg(C) = Symg(C2) realized as the space of homogeneous polynomials
of degree g in C[X,Y ]. Moreover, we endow this space with a right action (seriously,
a right action) of SL2(Z) by setting

(P
∣∣γ)(X,Y ) = P ((X,Y ) · γ∗) = P (dX − cY,−bX + aY )

where γ =
(
a b
c d

)
, γ∗ =

(
d −b
−c a

)
and P ∈ Vg(C). In fact, this action makes sense

for any matrix with non-zero determinant.
We then define

ψf ({s} − {r}) = 2πi
∫ s

r

f(z)(zX + Y )k−2dz ∈ Vk−2(C).

This gives an element of
Hom(∆0, Vk−2(C))

and as before we exhibit some Γ-invariant property. Namely, for any γ ∈ M2(Z)
with non-zero determinant, define a right action on Hom(∆0, Vk−2(C)) via

(ϕ|γ)(D) = ϕ(γD)|γ.
A simple computation, which again uses the modularity of f , yields that

ψf ∈ HomΓ(∆0, Vk−2(C))

where the subscript Γ denotes the subspace of maps which are invariant under the
above action of Γ. Explicitly, these are the maps such that

ϕ(γD) = ϕ(D)|γ−1

for γ ∈ Γ and D ∈ ∆0.

1.5. Modular symbols in general. So far we’ve considered modular symbols
with values in C (with trivial action) and with values in Symg(C2). Let’s write
down the general theory here as laid out in [1]. To this end, let ∆0 := Div0(P1(Q))
denote the set of degree zero divisors on P1(Q). Then ∆0 (the Steinberg module) has
the structure of a left Z[GL2(Q)]-module where GL2(Q) acts via linear fractional
transformations.

Let Γ be a finite index subgroup of SL2(Z), and let V be a right Z[Γ]-module.
We endow the set of additive homomorphisms Hom(∆0, V ) with the structure of a
right Γ-module by defining

(ϕ
∣∣γ)(D) := ϕ(γD)

∣∣γ
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for ϕ : ∆0 → V , D ∈ ∆0 and γ ∈ Γ.
For ϕ in Hom(∆0, V ), we say that ϕ is a V -valued modular symbol on Γ if ϕ

∣∣γ = ϕ
for all γ ∈ Γ; we denote the space of all V -valued modular symbols by SymbΓ(V ).
Thus, for an additive homomorphism ϕ : ∆0 → V ,

ϕ ∈ SymbΓ(V ) ⇐⇒ ϕ(γD) = ϕ(D)
∣∣γ−1 for all γ ∈ Γ and D ∈ ∆0.

We remark that if H denotes the upper-half plane and Ṽ is the associated locally
constant sheaf of V on H/Γ, then there is a canonical isomorphism

SymbΓ(V ) ∼= H1
c (H/Γ, Ṽ ),

provided that the order of any torsion element of Γ acts invertibly on V (see [1,
Prop 4.2]). In this course, we however focus on the explicit description of modular
symbols given by maps rather than by cohomology classes.

The modules V considered in this course will have the addition structure of a
right action by S0(p) where

S0(p) :=
{(

a b
c d

)
∈M2(Z) such that (a, p) = 1, p|c and ad− bc 6= 0

}
.

Given this additional structure, one can define a Hecke-action on SymbΓ(V ); if `
is a prime, then the Hecke operator T` is given by the double coset Γ ( 1 0

0 ` ) Γ. For
example, if Γ = Γ0(N) and ` - N , then

ϕ|T` = ϕ| ( ` 0
0 1 ) +

l−1∑
a=0

ϕ| ( 1 a
0 ` ) .

If q|N , we write Uq for Tq, and we have

ϕ|Uq =
q−1∑
a=0

ϕ|
(

1 a
0 q

)
.

We further remark that when
(−1 0

0 1

)
normalizes Γ, this matrix acts as an in-

volution on SymbΓ(V ). When 2 acts invertibly on V , we then have a natural
decomposition

SymbΓ(V ) ∼= SymbΓ(V )+ ⊕ SymbΓ(V )−

into ±1-eigenspaces for this action.
This last chunk of text was just cut and pasted from [4]. But now that we have

Hecke operators defined in general, go back and figure out how those symbols we
wrote down for Γ0(11) behave under Hecke!

1.6. L-values. As mentioned before, the modular symbol ψf should know special
values of the L-series of f . Generalizing equation (1), we have the following relation
between L-values and period integrals:

2πi
∫ 0

i∞
f(z)zjdz =

j!
(−2πi)j

L(f, j + 1)

for 0 ≤ j ≤ k − 2.
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If we set
∑k−2
j=0 cjX

jY k−2−j ∈ Symk−2(C2) equal to the value of ψf at {∞}−{0},
we can then relate the coefficient cj to the L(f, j + 1). Namely, we have

ψf ({∞} − {0}) = 2πi
∫ 0

i∞
f(z)(zX + Y )k−2dz

= 2πi
∫ 0

i∞
f(z)

k−2∑
j=0

(
k − 2
j

)
zjXjY k−2−jdz

=
k−2∑
j=0

(
k − 2
j

)(
2πi

∫ 0

i∞
f(z)zjdz

)
XjY k−2−j

=
k−2∑
j=0

(
k − 2
j

)
j!

(−2πi)j
L(f, j + 1)XjY k−2−j ,

which implies that

cj =
(
k − 2
j

)
j!

(−2πi)j
L(f, j + 1).

Note that this matches our previous formula when j = 0.

1.7. Eichler-Shimura. We close by stating a theorem of Eichler and Shimura
which relates these spaces of modular symbols to modular forms. Namely:

Theorem 1.1. There is an isomorphism

SymbΓ(Vk−2(C)) ∼= Mk(Γ,C)⊕ Sk(Γ,C)

which respects the action of Hecke on both sides.

You may ask, why are there two copies of the cusp forms appearing? That’s just
because of the action of ι that we observed at the very start. Attached to each
cusp form f , there are two modular symbols ψ+

f and ψ−f . You may ask, why are
Eisenstein series appearing? Well, look back to the maps we originally wrote down
on ∆ and then restricted to ∆0. These will account for Eisenstein series as you
probably already noted if you did the exercises at the end of section 1.5.

1.8. p-adic L-functions. As it will be relevant in the last lecture, we mention now
a connection to p-adic L-functions. Namely, one can construct the p-adic L-function
of f out of the modular symbol ψf .

Before doing this, a few words on what p-adic L-functions are, at least in the
case of weight 2. Their job is to interpolate special values of the L-series of f .
Namely, they should “know” the values L(f, χ, 1) where χ runs over all Dirichlet
characters of conductor pn. On the surface, this makes no sense because these are
complex numbers and p-adic L-functions should live in the p-adic world. To remedy
this, consider the modular symbol ψ±f all of whose values are algebraic multiples of

some fixed complex number Ω±f as we noted for the Γ0(11) example.4 Set ϕ±f =
ψ±f

Ω±f

which is a modular symbol taking values in Q. Also, set ϕf = ϕ+
f + ϕ−f .

4We are side stepping the appropriate normalization of this period which would be needed to
get µ-invariants correct.
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From equation (3), it now follows that the L-values
L(f, χ, 1)

Ω±f
are all algebraic.

(Here the sign of the period depends on whether χ is even or odd.) Since these
L-values are algebraic, we can and do consider them as either complex numbers or
p-adic numbers.

So what kind of p-adic gadget can encode all of these twisted L-values. Well, in
the spirit of Tate’s thesis, one thinks of the association:

χ 7→ L(f, χ, 1)
Ω±f

,

and then thinks of L-functions as functions on character spaces. In the p-adic world,
the relevant character space is Hom(Z×p ,Cp). Note that every Dirichlet character
of p-power conductor is in this space. So the p-adic L-function should be able to
take as an input any Cp-valued character on Z×p and return a p-adic number. Even
better, it will be able to take as an input any “nice enough” function on Z×p , and
return a p-adic number. That is, the p-adic L-function will be a distribution – i.e
something in the dual of a space of nice p-adic functions.

All of this will be made more precise in the next lecture, but for now, we want
to build a gadget which takes in nice functions on Z×p and spits out numbers.
Moreover, when you input a finite-order character on Z×p , it spits out the relevant
twisted L-value. To accomplish this, it suffices to write down a measure on Z×p
which we now do (at least in the case of ordinary weight two modular forms). That
is, let α be the unique unit root of x2 − apx+ p and define

µf (a+ pnZp) =
1
αn

ϕf ({∞} − {a/pn})− 1
αn+1

ϕf ({∞} − {a/pn−1}).

With this definition, the p-adic L-function µf satisfies the following interpolation
property: for χ a non-trivial finite order character of conductor pn, we have∫

Z×p
χdµf =

1
αn

τ(χ)
L(f, χ, 1)

Ω±f
.

Many questions should arise: where does the formula defining µf come from? Is
it even additive: i.e. if one takes an open of the form a + pnZp and writes it as a
disjoint union each of the form b + pn+1Zp, is that formula compatible with such
a union? Lastly, how does it connect to L-values? We will attempt to answer all
of these questions in that last lecture. For now, let me just say, “you’ll see”, “yes”
and “equation (3)”, and point out that the p-adic L-function of f is being built
out of the data of the modular symbol attached to f evaluated at infinitely many
different divisors.

2. Distributions leading to overconvergent modular symbols

2.1. A brief story about p-adic families. In the mid 80s, Hida constructed
p-adic families of ordinary modular forms. The constructions and methods of this
theory rely crucially on the following observation: the dimension of the subspace
of ordinary modular forms in Sk(Γ) is independent of the weight k. This allowed
Hida to p-adically interpolate the finite-dimensional spaces of ordinary forms as the
weight varied.

This phenomenon of course cannot occur for arbitrary modular forms as the
dimension of the full space Sk(Γ) heavily depends upon k (growing unboundedly as
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k increases). Thus, one can’t hope for a nice (finite, flat) family over weight space
interpolating Sk(Γ).

To circumvent this problem, Coleman had the ingenious idea to pass to a much
larger space, namely, M†k(Γ), the space of overconvergent modular forms. This is
an infinite-dimensional Banach space (on which Up acts completely continuously).
Moreover, it contains Mk(Γ), the space of classical forms. And, doubly moreover,
Coleman proves that an overconvergent eigenform is classical if the p-adic valuation
of its Up-eigenvalue is strictly less than k − 1.5

Now at least there is a hope that the Banach spaces D†k(Γ) can be put into a nice
family as they all at least have the same dimension, namely infinity! And indeed
this is exactly what Coleman does, and he succeeds in making p-adic families of
modular forms (although, unlike Hida theory, there are forms in these families of
classical weight which are not themselves classical).

In this course, we will describe Steven’s analogue of overconvergent modular
forms (called overconvergent modular symbols) along with his analogue of Cole-
man’s control theorem. To this end, we are going to replace the spaces Vg(C) with
p-adic spaces whose dimensions don’t move around with g. In particular, we will
write down spaces Dg(Zp) of p-adic distributions (which are infinite-dimensional
Banach spaces). Moreover, these spaces will admit surjective maps from Dg(Zp) to
Vg(Qp). We then replace the space SymbΓ(Vg(Qp)) with the space SymbΓ(Dg(Zp))
which will be the space of overconvergent modular symbols. And indeed these will
be the spaces that ultimately vary well p-adically.

2.2. Distributions. We start by defining the simplest of the distribution spaces
which we will need for this course. Namely, let A denote the collection of power
series with coefficients in Qp which converge on the unit disc of Cp. That is:

A = {f(z) ∈ Qp[[z]] : f(z) =
∑
n

anz
n and |an| → 0 as n→∞}.

Note that A is a Banach space under the norm:

||f || = max
n
|an|

where f(z) =
∑
n anz

n. We then define our space of distributions D by

D = Homcont(A,Qp).

Note that D is a Banach space under the norm

||µ|| = sup
f∈A
f 6=0

|µ(f)|
||f ||

.

2.3. Moments of distributions. This distribution space is quite concrete. In-
deed, D can be identified with the space of bounded sequences in Qp endowed with
the sup norm. To get this identification, we just note that the Qp-span of all mono-
mials {zj}∞j=0 is dense in A (check this!). Thus, a distribution µ ∈ D is uniquely

5A classical form of level Γ cannot have a Up-eigenvalue with p-adic valuation larger than k−1.
So it’s only forms of slope k − 1 that are not completely explained by this theorem. These are

called the critical slope forms.
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determined by its values on these monomials. In particular, we get an injective
map

D M−→
∞∏
j=0

Qp.

µ 7→ {µ(zj)}j

We call {µ(zj)}j the sequence of moments attached to µ.
We claim that the image of M is exactly the collection of bounded sequences.

Indeed, if {αn} is a bounded sequence of elements in Qp, we can just define a
distribution µ ∈ D by simply setting

µ(zn) = αn.

Then µ extends linearly to a functional on A by setting

µ(
∑

anz
n)) =

∑
anαn,

which converges as |an| → 0 and {αn} is bounded. We leave it for you to check
that for any µ ∈ D, it’s associated sequence of moments is a bounded sequence.

The upshot of this subsection is the following: although D has the complicated
definition of the dual of convergent power series on the closed unit disc of Cp, it
has the very concrete realization as the collection of bounded sequences in Qp.

2.4. The action of Σ0(p). Let

Σ0(p) =
{(

a b
c d

)
∈M2(Zp) such that p - a, p | c and ad− bc 6= 0

}
For each non-negative integer k, we define a weight k action of Σ0(p) on A by

(γ ·k f)(z) = (a+ cz)k · f
(
b+ dz

a+ cz

)
where γ =

(
a b
c d

)
∈ Σ0(p) and f ∈ A. Then Σ0(p) acts on D on the right by

(µ
∣∣
k
γ)(f) = µ(γ ·k f)

where µ ∈ D. When we view A or D as a Σ0(p)-module endowed with a weight k
action, we write Ak or Dk.

Note that by “transport of structure” we have also defined a Σ0(p)-action on
the space of bounded sequences in Qp via our identification from the last section.
However, don’t expect anything special; this action is just a mess in the language
of sequences.

2.5. Finite-dimensional quotients. For an integer k ≥ 0, consider

Vk := Vk(Qp) := Symk(Q2
p),

the space of homogeneous polynomials of degree k in X and Y with coefficients
in Qp. We recall that we endow the space Vk(Qp) with the structure of a right
GL2(Qp)-module by

(P
∣∣γ)(X,Y ) = P ((X,Y ) · γ∗) = P (dX − cY,−bX + aY )

where γ =
(
a b
c d

)
and P ∈ Vk(Qp).
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There is an Σ0(p)-equivariant map

ρk : Dk → Vk(Qp)

µ 7→
∫

(Y − zX)k dµ(z)

where the integration takes place coefficient by coefficient. That is

ρk(µ) =
k∑
j=0

(−1)j
(
k

j

)
µ(zj)XjY k−j ∈ Vk(Qp).

(Check that this map is really Σ0(p)-invariant!)

2.6. Specialization. Let Γ0 = Γ0(Np). We refer to SymbΓ0
(Dk) as a space of

weight k overconvergent modular symbols.6 These spaces of overconvergent mod-
ular symbols naturally map to the space of classical modular symbols. Indeed, the
map ρk : Dk → Vk induces a map

ρ∗k : SymbΓ0
(Dk)→ SymbΓ0

(Vk)

which we refer to as the specialization map. Note that ρ∗k is Hecke-equivariant as
ρk is Σ0(p)-equivariant.7

Now the source of the specialization map is infinite-dimensional while the target
is finite-dimensional, and so the kernel is certainly huge. Indeed, Up acts on the
target with slope at most k+ 1.8 Thus, the entire subspace of the source on which
Up acts with slope larger than k + 1 must be in the kernel. The following control
theorem of Stevens says that apart from the critical slope cases (i.e. slope exactly
equal to k + 1), this is precisely what happens. Namely,

Theorem 2.1 (Stevens). We have

SymbΓ0
(Dk)(<k+1) −→ SymbΓ0

(Vk)(<k+1)

is an isomorphism. That is, the specialization map restricted to the subspace where
Up acts with slope strictly less than k + 1 is an isomorphism.

This should be viewed as analogous to Coleman’s theorem on small slope forms
being classical.9 Indeed, this theorem says that a classical eigensymbol of small
enough slope lifts uniquely to an overconvergent eigensymbol. Note that in Cole-
man’s world, classical forms are a sub of overconvergent forms. However, in this
setting, classical modular symbols are a quotient of overconvergent modular sym-
bols. A proof of Theorem 2.1 will be sketched in the next lecture.10

6Note that Dk is equipped with a natural Γ0-action, but this action does not extend to Γ.
7Recall that Vk = Symk(Q2

p) and so modular symbols in SymbΓ0
(Vk) correspond to modular

forms of weight k + 2, and not weight k.
8Here slope is the p-adic valuation of an eigenvalue of Up.
9In comparing the two theorems remember the shift between k and k + 2.
10What happens in the critical slope case is more subtle. See [5] and [2].
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2.7. The truth about our distribution spaces. To be more honest, the space
D is not really the space we are ultimately interested in (although it will be the
space we primarily work with). Indeed, p-adic L-functions actually live in a smaller
space of distributions. Distributions in D can only be evaluated on functions which
are expressible as a convergent power series on the entire closed unit disc. We want
to be evaluating on functions on Zp. Thinking of Zp as inside the closed unit ball, a
random continuous function will not extend to a rigid analytic function on disc. For
instance, any non-constant but locally constant functions (e.g. a character) cannot
be represented by a single power series.

The functions on Zp we will be considering are the “locally analytic” ones; that
is, f : Zp → Cp is locally analytic if for every point y of Zp, the function f is
expressible as a power series on some ball around y in Zp. (Since Zp is compact,
one only needs finitely many power series to represent f on Zp.) Let A denote the
collection of locally analytic functions on Zp. Note that finite-order characters on
Z×p (considered as functions on Zp by extending by 0) are locally analytic since they
are locally constant. One can also check that any character on Z×p (not necessarily
finite-order) is also locally analytic.

We want to define the space of “locally analytic” distributions to be the (con-
tinuous) dual of A. However, we haven’t given a topology yet to A. This is a little
bit tricky because A is not a Banach space.

To proceed, for each r ∈ |C×p |, we set

B[Zp, r] = {z ∈ Cp | there exists some a ∈ Zp with |z − a| ≤ r}.

For example, if r ≥ 1 then B[Zp, r] is the closed disc in Cp of radius r around 0.
If r = 1

p then B[Zp, r] is the disjoint union of the p discs of radius 1
p around the

points 0, 1, . . . , p− 1.
Let A[r] denote the collection of Qp-rigid analytic functions on B[Zp, r]. For

example, if r ≥ 1

A[r] =

{
f(z) =

∞∑
n=0

anz
n ∈ Qp[[z]] such that {|an| · rn} → 0

}
.

In particular, A[1] is nothing other than the space A we’ve been studying this
section. If r = 1

p , then an element of A[r] is a function on B[Zp, r] which when
restricted to each of the p discs of radius 1

p is representable by a convergent power
series with coefficients in Qp. The norm on A[r] is given by the supremum norm.
That is, if f ∈ A[r] then

||f ||r = sup
z∈B[Zp,r]

|f(z)|p.

For r1 > r2, there is a natural restriction map A[r1]→ A[r2] which is injective.
Since Zp is contained in B[Zp, r] for any r > 0, there is a natural restriction map
A[r]→ A which is also injective. Moreover, since each element in A is representable
by finitely many power series, any such element is in the image of A[r] for some r.
Thus,

A = lim−→
r

A[r]

as r tends to 0 in the limit. We thus endow A with the inductive limit topology
which is the strongest topology making all of the inclusions A[r]→ A continuous.
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Lastly, we set D equal to the continuous Qp-dual of A, which we will call the space
of locally analytic distributions on Zp.

Since we have a map A → A by restriction to Zp, dualizing gives an injective
map D → D. The injectivity of this map follows from:

Fact: The span of the monomials {zj} is dense in A.

Thus, we can and do identify D as a subspace of D; that is, every locally analytic
distribution is in fact a rigid analytic distribution.

We note that in a completely analogous way, we can endow A and D with a
weight k action by Σ0(p), and again we write Ak and Dk. It is also true that
the same formula defining ρk also gives a Σ0(p)-map from Dk to Vk(Qp). Lastly,
Steven’s control theorem will hold true if we replace Dk with Dk. Indeed, for any
h ∈ R, the natural map

SymbΓ0
(Dk)(<h) → SymbΓ0

(Dk)(<h)

is an isomorphism. This last fact is key, because it essentially says that if we are
working with Up-eigensymbols of finite slope, then it doesn’t matter if we use Dk
or DK .

2.8. Connecting to p-adic L-functions. We close this section by mentioning a
connection to p-adic L-functions (and thus to Stark-Heegner points).

Theorem 2.2. Let f be a cuspidal eigenform on Γ0 of non-critical slope,11 and
let ϕf be the corresponding modular symbol. If Φf is the unique overconvergent
eigensymbol lifting ϕf (by Theorem 2.1), then Φf ({∞} − {0}) is the p-adic L-
function of f .

This theorem gives a construction of the p-adic L-function in one fell swoop as
opposed to what was done in section 1.8 when the p-adic L-function was defined by
gathering together the data of ϕf evaluated on infinitely many different divisors.

3. The Control Theorem: Comparing overconvergent modular
symbols to classical ones

We aim to give an explicit proof the control theorem, at least for the slope 0
subspace.

3.1. Finite approximation modules. We would like to be able to approximate
distributions in a systematic way (with a finite amount of data). Doing so would
(a) allow us to represent distributions on a computer, and (b) lead us to an explicit
proof of Steven’s control theorem.

A first guess on how to form an approximation of a distribution µ with integral
moments is to fix two integers M and N , and consider the first M moments of
µ modulo pN . Unfortunately, these approximations are not stable under the ac-
tion of Σ0(p); that is, given such an approximation of µ, one cannot compute the
corresponding approximation of µ

∣∣γ to the same accuracy. Indeed, the collection

11Note that we are assuming that f is an eigenform on Γ0 and not on Γ. If one is starting off
with a form on Γ, to form its p-adic L-function, one must choose a p-stabilization of this form to

Γ0. See section 4.1 for details.
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of distributions whose first M moments vanish is not stable under the action of
Σ0(p)-stable. To see this, let’s work out a little example.

Let k = 0 and let µ4 denote the distribution which takes the value 1 on z4 and
0 on all other monomials. Let γ =

(
1 0
−p 1

)
, and we compute

(µ4|γ)(z) = µ4

(
z

1− pz

)
= µ4

z · ∞∑
j=0

(pz)j

 = p3

(µ4|γ)(z2) = µ4

(
z2

(1− pz)2

)
= µ4

z2 ·

 ∞∑
j=0

(pz)j

2
 = 3p2

(µ4|γ)(z3) = µ4

(
z3

1− pz

)
= µ4

z3 ·

 ∞∑
j=0

(pz)j

3
 = 3p

So even though the first 4 moments of µ4 vanish, the same is not true of µ4|γ.
However, do note that the early moments of µ4|γ are highly divisible by p, and this
divisibility trails off as we consider later moments.

This phenomenon holds quite generally. Let

D0
k =

{
µ ∈ Dk | µ(xj) ∈ Zp for all j ≥ 0

}
be the collection of distributions with all integral moments, and consider the sub-
space

FilM D0
k =

{
µ ∈ D0

k such that µ(zj) ∈ pM−jZp
}
.

whose moments satisfy this trail-off of divisibility. That is, for µ ∈ FilM D0
k, the

0-th moment of µ is divisible by pM , the first is divisible by pM−1, the second is
divisible by pM−2, and so on. A direct computation (try it!) shows that FilM D0

k

is stable under the weight k action of Σ0(p) for k ≥ 0.

3.2. Approximating distributions. We now use the filtration
{

FilM D0
k

}
to

systematically approximate distributions.

Definition 3.1. We define the M -th finite approximation module of D0
k to be

Fk(M) := D0
k/FilM (D0

k).

Proposition 3.2. We have that Fk(M) is a Σ0(p)-module and

Fk(M) ∼→ (Z/pMZ)× (Z/pM−1Z)× · · · × (Z/pZ)

µ 7→
(
µ(zj) + pM−jZp

)
j

is an isomorphism. In particular, Fk(M) is a finite set.

Proof. Since FilM (D0
k) is a Σ0(p)-module, Fk(M) is also a Σ0(p)-module. The fact

that this map is an isomorphism follows directly from the definition of the filtration
and the fact that the moment map identifies D0

k with the set of sequences in Zp. �

By the above proposition, we can approximate µ ∈ D0
k with a finite amount of

data by taking its image in Fk(M). Moreover, if one knows the image of µ in every
Fk(M), then one can recover µ as one can recover all of its moments. Great!
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3.3. Lifting modular symbols. Let’s assume for simplicity that we are working
in weight 2 (i.e. k = 0), and drop k from the notation. We seek to show that the
specialization map

SymbΓ0
(D)ord −→ SymbΓ0

(Qp)ord

is an isomorphism. Here the superscript ord denotes the subspace where Up acts
invertibly (i.e. with slope 0), and so this statement is a special case of the control
theorem.

To gain some intuition, let’s assume this theorem is true, and from that, try
to construct the unique lift of a given eigensymbol. Let ϕ denote some Hecke-
eigensymbol in the target, SymbΓ0

(Qp)ord. Then take some overconvergent lift Ψ
of ϕ in SymbΓ0

(D). Note that we are not assuming that Ψ is a Up-eigensymbol (and
thus not necessarily in the slope zero subspace). Since the source of specialization
is infinite-dimensional and the target is finite-dimensional, there will be lots and
lots of choice for such a Ψ.

The operator Up is compact, and so has an infinite collection of eigenvalues which
tend to 0 in Zp. Say the eigenvalues are

λ1, λ2, . . . , λn . . . ,

ordered by valuation, with corresponding eigensymbols,

Φ1,Φ2, . . .Φn . . . ,

with Φ1 our sought after eigensymbol lifting ϕ. In particular, λ1 is then the Up-
eigenvalue of ϕ.

Now write Ψ as an infinite linear combination of these symbols:

Ψ = Φ1 + a2Φ2 + · · ·+ Φn + . . . .12

Applying the operator Up/λ1 repeatedly to Ψ, and looking at its eigen-expansion
we get

(Up/λ1)MΨ = Φ1 + a2(λ2/λ1)MΦ2 + · · ·+ (λn/λ1)MΦn + . . . .

Note that (Up/λ1)MΨ is still a lift of ϕ as specialization is Hecke-equivariant – that
is,

ρ∗((Up/λ1)MΨ) = (Up/λ1)Mρ∗(Ψ) = (Up/λ1)Mϕ = ϕ.

Since ϕ is an ordinary eigensymbol, λ1 is a p-adic unit. To simplify matters, let’s
assume that λ1 is the only unit eigenvalue of Up.13 In particular, as we continually
apply Up/λ1, the higher terms in the eigen-expansion of Ψ get p-adically small, and
thus we get a convergence: {

(Up/λ1)MΨ
}
→ Φ1,

and we have “constructed” the desired symbol.
To turn the above argument into a real proof, we need to (a) not assume the

theorem we want to prove, and (b) deal with all of the convergence issues that arise
in these eigen-expansions. We do this in the following steps.

12Because of convergence issues, there is no reason that such an expansion should even exist,
but let’s just imagine so anyway.

13If this were not true, one could use the other Hecke operators to kill off the other over-
convergent eigensymbols of slope 0 in the expansion of Ψ without changing the fact that Ψ lifts
ϕ.
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A) Prove that the specialization map is surjective. We need this statement
to know the existence of the lift Ψ of ϕ. This fact is not too hard to establish – the
source is infinite-dimensional and the target is finite-dimensional, so the surjectivity
statement is pretty reasonable.

B) Prove directly that the sequence
{

Ψ|(Up/λ)M
}

converges. Here λ is the
Up-eigenvalue of ϕ. This also is not too hard. The underlying reason is the following
lemma.

Lemma 3.3. If Φ is in the kernel of specialization, then

||Φ|Up|| ≤
1
p
||Φ||.

In particular, any Up-eigensymbol in the kernel of specialization has slope at least
1.

We’ll assume this lemma for now (in fact it’s just an easy computation). Back to
the main argument, we’ll check that

{
Ψ|(Up/λ)M

}
is Cauchy. To this end, we note

that Ψ−Ψ|(Up/λ)j is in the kernel of specialization for any j (as both symbols lift
ϕ). Thus,

Ψ|(Up/λ1)M1 −Ψ|(Up/λ1)M2 =
(
Ψ−Ψ|(Up/λ1)M2−M1

) ∣∣(Up/λ1)M1

tends to 0 for M1,M2 large as λ1 is a unit and the right hand side is Up applied
many times to an element in the kernel of specialization. This proves the desired
Cauchy statement. Let Φ denote the limit of

{
Ψ|(Up/λ)M

}
.

C) Prove that Φ is a Hecke-eigensymbol lifting ϕ. That Φ lifts ϕ is clear as
(Up/λ)MΨ lifts ϕ for every M . That Φ is an Up-eigensymbol is clear as

Φ|(Up/λ) =
(

lim
M→∞

Ψ|(Up/λ)M
)
|Up = lim

M→∞
Ψ|(Up/λ)M+1 = Φ.

The other eigenvalues are also easily checked. (Do it!)

3.4. Lifting symbols – take II (a la M. Greenberg). In the last section, we
punted on the issue of simply lifting to ϕ to some overconvergent symbol – not even
an eigensymbol. In fact, a lot was swept under the rug here (i.e. step A). It’s not
too hard to check this lift exists (using a little cohomology), but to directly write
down a lift is involved (though completely worked out in [4]).

However, Matthew Greenberg found a method which sidesteps these difficulties
and does steps A through C from the past section in one fell swoop (see [3]). Let’s
explain. Let ϕ be a Up-eigensymbol in SymbΓ0

(Qp)ord. The idea is to succes-
sively lift ϕ to a Up-eigensymbol in SymbΓ0

(F(M))ord for M = 1, 2, . . . . Since
lim←−M F(M) = D this would suffice to produce an eigenlifting of ϕ. Note also that
this is exactly the kind of thing one would want to do if you were programming a
computer.

Let’s start with M = 1. To write down an element Ψ1 of SymbΓ0
(F(1))ord, we

need to give the 0-th moment of Ψ1(D) modulo p2 and the 1-st moment of Ψ1(D)
modulo p for each divisor D ∈ ∆0. Since we are trying to write down a lift of ϕ,
our hands our forced on the 0-th moments. Indeed, Ψ1(D)(1) should just be the
reduction of ϕ(D) modulo p2. As for the 1-st moments, there is no clear choice. So
just randomly assign values to Ψ1(D)(z) ∈ Z/pZ.
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The result is an element

Ψ1 ∈ Maps(∆0,F(1)).

Here Maps means simply that, set maps. We’ve lost the homomorphism property
when we randomly assigned the first moments, and we’ve certainly lost the Γ-
invariance.

To somehow fix this random choice, we apply Up. (This shouldn’t be so un-
reasonable considering the arguments from the last section.) Though, a word of
warning here: Up is a well-defined operator on modular symbols, i.e. it is inde-
pendent of double coset representatives of Γ0

(
p 0
0 1

)
Γ0. On Maps(∆0, ·), this is no

longer true. So we just pick coset representations. That is Up is defined as the
operator

Up :=
p−1∑
a=0

(
1 a
0 p

)
.

Now the magic: the element Φ1 := Ψ1|(Up/λ) lies in

SymbΓ0
(F(1)) ⊆ Maps(∆0,F(1));

that is, Φ1 is both additive and Γ0-invariant. Moveover, Φ1 is independent of any
choices made!

Let’s see why this is true. First, we’ll check that Φ1 is in fact a homomorphism.
To see this, consider

Φ1(D) + Φ1(D′)− Φ1(D +D′)(6)

=

(
p−1∑
a=1

Ψ1(γaD) + Ψ1(γaD′)−Ψ1(γaD + γaD
′)

)
|γa(7)

where γa =
(

1 a
0 p

)
. By construction, Ψ1(γaD) + Ψ1(γaD′) − Ψ1(γaD + γaD

′) has
vanishing 0-th moments as these moments are built out of the values of ϕ which is
a bona-fide modular symbol. However, we have no control over the 1-st moments.

To understand what is going on, let’s take an arbitrary element µ of F(1) with
vanishing 0-th moment and act γa on it. We have

(µ|γa)(1) = µ(γa · 1) = µ(1) = 0,

and thus µ|γa still has vanishing first moment. Further,

(µ|γa)(x) = µ(γa · x) = µ(a+ px) = µ(a) + pµ(x) = 0

as µ(a) = aµ(1) = 0 and p kills whatever value µ(x) is taking. (Remember the 1-st
moment lies in Z/pZ!) This means that any element in F(1) with vanishing first
moment is killed by γa and hence the expression in (6) vanishes. In particular, Φ1

is a homomorphism!
A similar argument proves that Φ1 is Γ-invariant. Just consider Φ|γ − Φ and

argue just as before (remembering that ϕ|γ = ϕ).
And so we’ve done it! We’ve formed a lift of ϕ with values in F(1). To see

how general this is, let’s try to form a F(2)-valued lift Ψ2 of Φ1. For any divisor
D ∈ ∆0, we seek to define the 0-th, 1st, and 2nd moments of Ψ2(D) modulo p3,
p2 and p respectively. The 0-th moment is easy – just reduce ϕ(D) modulo p3.
For the 1st moment, we want to be lifting Φ1. This means the value we choose for
Ψ2(D)(x) should be congruent to Φ1(D)(x) modulo p – pick any value modulo p2

that works. Lastly, we have no info on 2nd moment, so again, pick randomly.
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As before, we set Φ2 := Ψ2|Up ∈ Maps(∆0,F(2)). To check that Φ2 is a homo-
morphism, the identical argument as above reduces us to checking that any element
of F(2) with 0-th moment equal to 0 and first moment divisible by p is killed by
γa. Let’s compute!

Fix µ any such element of F(2). We have

(µ|γa)(1) = µ(γa · 1) = µ(1) = 0,

Further,

(µ|γa)(x) = µ(γa · x) = µ(a+ px) = µ(a) + pµ(x) = pµ(x) = 0

as µ(x) is divisible by p and thus pµ(x) is 0 modulo p2. Lastly,

(µ|γa)(x2) = µ(γa · x) = µ((a+ px)2) = µ(a2) + 2apµ(x) + p2µ(x2) = 0

as before as desired.
As you might imagine, this just keeps working. The underlying fact that is

needed is that if µ is in F(M) with vanishing 0-th moment and with vanishing
projection to F(M − 1) then µ|γa = 0. We leave the details to you (plus the
generalizations to higher weight and higher (non-critical) slope).

4. Overconvergent modular symbols and p-adic L-functions

4.1. Motivating the construction of p-adic L-functions. The p-adic L-function
of a eigenform f ∈ S2(Γ0(N)) is a distribution µf ∈ D such that when µf is eval-

uated at some Dirichlet character χ the result should be
L(f, χ, 1)

Ω±f
up to some

explicit controllable constants.
When p - N and f is a p-ordinary form (that is, when ap(f) is a p-adic unit),

a formula was given in section 1.8 for µf (a + pnZp).14 We now take a little bit of
time to motivate this formula, and in the process, derive the basic properties of µf .

The starting point is equation (3) which relates L-values to period integrals.
Rewriting this formula is terms of modular symbols gives

(8) τ(χ)
L(f, χ, 1)

Ω±f
=

∑
a mod pn

χ(a) · ϕ±f ({∞} − {a/pn}).

Staring at this above expression just right, one sees the right hand side as a Riemann
sum. Indeed, think of χ as a function on Zp, and cover Zp by the opens a+ pnZp.
Then think of ϕ±f ({∞}−{a/pn}) as the measure of a+ pnZp. The right hand side
then reads as the sum over opens in our cover of the measure of that open times
the value of the function on that open. Moreover, this Riemann sum equals an
L-value, which is exactly what we are after.

However, if µ is a measure on Zp, then it must be true that

(9) µ(a+ pnZp) =
p−1∑
j=0

µ(a+ jpn + pn+1Zp)

as a+pnZp is the disjoint union of opens of the form a+ jpn+pn+1Zp. Could it be
that the values of the modular symbol ϕ±f ({∞}−{a/pn}) satisfy such an additivity

14Writing µf (a + pnZp) is a bit of an abusive of notation. What is meant here is the value

obtained when evaluating µf on the characteristic function of a+ pnZp.
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property? Amazingly the answer is nearly yes, and results from the fact that ϕf is
a Tp-eigensymbol.

Indeed, we know that ϕf |Tp = apϕf . Thus,

ap·ϕf ({∞} − {a/pn})
= (ϕf |Tp)({∞} − {a/pn})

= (ϕf |
(
p 0
0 1

)
)({∞} − {a/pn}) +

p−1∑
j=0

(ϕf |
(

1 j
0 p

)
)({∞} − {a/pn})

= ϕf ({∞} − {a/pn−1}) +
p−1∑
a=0

ϕf ({∞} − {(a+ jpn)/pn+1}).

Note that this formula is nearly what we are looking for except for two points: (a)
the factor of ap in the front of the left hand side, and (b) the first term of the right
hand side which arose from acting by

(
p 0
0 1

)
.

Let’s start with the second issue. We first note that if we had been using the
Hecke operator Up instead of Tp, then this problem wouldn’t be present. Indeed,
Up is defined by only p terms and is exactly missing that extra troublesome matrix(
p 0
0 1

)
. The reason we are using Tp instead of Up is that we are working at a level

prime to p. To get around this, we can force p into the level through the process of
p-stabilization.

Namely, our form f is an eigenform for the full Hecke algebra for level Γ0(N).
However, if we instead think of f as an eigenform with level Γ0(Np), it would no
longer be an eigenform at p (although it is still an eigenform away from p). As
usual, we also consider the form f(pz) which has level Γ0(Np) and is an eigenform
away from p. Moreover, the span of f(z) and f(pz) is stable under the action of Up,
and a pleasant computation shows that the characteristic polynomial of Up on this
two-dimensional space is nothing other than the Hecke polynomial x2 − apx+ p.

Performing a little linear algebra (i.e. diagonalizing), we see that if α and β are
the roots of x2 − apx+ p, and if we set

fα = f(z)− βf(pz) and fβ = f(z)− αf(pz),

then fα|Up = αfα and fβ |Up = βfβ – i.e. fα and fβ are Up-eigenforms with
eigenvalues α and β respectively. Since we are assuming that f is p-ordinary, ap is
a p-adic unit. Thus exactly one of the two roots α and β is also a p-adic unit as
their sum is ap and their product is p. Let α be this unit root.

Returning to modular symbols, we can consider the modular symbol ϕfα at-
tached to fα. Since fα is a Up-eigensymbol, we get the following formula (analogous
to what we derived above but without the extra bothersome term):

α · ϕfα({∞} − {a/pn}) =
p−1∑
a=0

ϕfα({∞} − {(a+ jpn)/pn+1}).

This relation is nearly what we had hoped for except for the the presence of the α
on the left hand side. But, this is easily dealt with. Indeed, we set

µf (a+ pnZp) =
1
αn

ϕfα({∞} − {a/pn}),
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and an easy computation shows that µf satisfies the additivity relation in (9).15

Further, a simple computation shows that ϕfα = ϕf− 1
αϕf |

(
p 0
0 1

)
. Plugging this into

the definition of µf yields the formula stated in section 1.8. Lastly, the interpolation
property follows directly from (8).

4.2. Proving that Φ({0} − {∞}) is the p-adic L-function. In this section, we
prove Theorem 2.2 for weight 2 ordinary forms. Note that in the statement of that
theorem, f has level Γ0(Np). To match the notation of the previous seciton, we
will take f to be fα. That is, let Φ be the unique overconvergent modular symbol
in SymbΓ0

(D) lifting ϕfα . We will show that Φ({0} − {∞}) = µf .
Note that

Φ({∞} − {0}) = α−n(Φ|Unp )({∞} − {0})

= α−n
pn−1∑
a=0

Φ ({∞} − {a/pn})
∣∣ ( 1 a

0 pn
)
.

Evaluating at the characteristic function of a+ pnZp gives

Φ({∞} − {0})(1a+pnZp)

= α−n
(
Φ ({∞} − {a/pn})

∣∣ ( 1 a
0 pn

))
(1a+pnZp)

= α−nΦ ({∞} − {a/pn})
((

1 a
0 pn

)
· 1a+pnZp

)
= α−nΦ ({∞} − {a/pn})

(
1Zp
)
.

But the specialization map for k = 0 is simply taking total measure. Thus, we get

Φ({∞} − {0})(1a+pnZp) = α−nρ∗(Φ) ({∞} − {a/pn}) = α−nϕfα ({∞} − {a/pn})
which agrees exactly with the definition of the p-adic L-function from the previous
section.
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15In fact, this definition only tells us the value of µf on locally constant functions. However,
since the values given are bounded (α is a unit!), standard arguments via Riemann sums allow us
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