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This document contains a more detailed description of the project for the
Arizona Winter School. It may also be regarded as a leitfaden for preparing for
the talks.

The problem we are concerned with in our lectures and which we shall refer
to as the lifting problem was originally formulated by Frans Oort in [1]. To
state it, we fix an algebraically closed field κ of positive characteristic p. Let
W (κ) be the ring of Witt vectors over κ. Throughout our notes, o will denote a
finite local ring extension of W (κ) and k = Frac(o) the fraction field of o. Note
that o is a complete discrete valuation ring of characteristic zero with residue
field κ.

Definition 1 Let C be a smooth proper curve over κ. Let G ⊂ Autκ(C)
be a finite group of automorphisms of C. We say that the pair (C,G) lifts
to characteristic zero if there exists a finite local extension o/W (κ), a smooth
projective o-curve C and an o-linear action of G on C such that

(a) C is a lift of C, i.e. there exists an isomorphism λ : C ⊗o κ ∼= C, and

(b) the G-action on C restricts, via the isomorphism λ, to the given G-action
on C.

Problem 2 (The lifting problem) Which pairs (C,G) as in Definition 1 can
be lifted to characteristic zero?

Rather than considering pairs (C,G), one may consider the corresponding
Galois cover C → D := C/G. A variant of Problem 2 is to ask for which
groups G all pairs (C,G) lift to characteristic zero. This is known classically
for so-called tame actions, i.e. in the case that the characteristic p of κ does not
divide the ramification indices of the associated cover C → D. Therefore, we
may restrict to wild actions, i.e. the case that p divides some of the ramification
indices of C → D. Here it is known that all G-covers with G = Z/pZ or G = Dp

may be lifted to characteristic zero. On the other hand, it is known that for
many groups G there exist pairs (C,G) that do not lift. Interesting examples
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discussed in the notes are for G = Q8 (in the case that p = 2) and G = (Z/pZ)n

(for p odd and n > 1).
It is known that to solve the Lifting Problem (Problem 2), one may restrict

to lifting local actions (ÔC,y ' κ[[z]], Gy) (see § 1.2 of the notes). With such a
local action, we may associate a so-called Katz–Gabber cover f0 : C0 → D0 ' P1

κ

(§ 4.1), which is Galois with Galois group the decomposition group Gy. Locally,
in one point y this cover is isomorphic to the given local action. The cover
is uniquely determined by this and the requirement that the genus of C0 is as
small as possible. (In particular, the cover f0 is tame outside y.) To solve the
lifting problem, we may therefore restrict to such Katz–Gabber covers.

The main goal of the project is to prove the following result.

Conjecture 3 Let G be the alternating group A4 and κ an algebraically closed
field of characteristic 2. Then every G-action (C,G) over κ lifts to characteristic
zero.

The notes prove an analogous statement for Galois covers in characteristic
p with Galois group Fp o Z/mZ. In this case the statement is slightly different:
not all covers lift, but one can exactly characterize those that do.

Step I : Higher ramification groups The first step of the project is to
describe A4-covers f : C → P1

κ in characteristic 2 of Katz–Gabber type. (In
particular, they are only wildly branched at one point∞). Rather than describ-
ing all such covers by equations, it suffices for our purposes to study the wild
ramification. An important invariant measuring how “wild” the ramification of
a given cover f is, is the filtration of higher ramification groups. Associated
with this are the Swan and Artin conductors. In the notes, one finds a short
recapitulation of these concepts in § 2 of the notes (Situation A: the classical
case). A more detailed description can be found in [2, Chapter 4].

The notes contain several sets of exercises on higher ramification groups. The
case G = Z/pnZ in characteristic p is worked out in Exercises 2.11, 2.12 and
2.21. Exercise 2.23 describes filtrations of higher ramification groups of certain
Q8-Galois covers in characteristic 2. These exercises are a good preparation for
the lectures, as higher ramification groups will be considered known in our talks.

(Project a) Classify all local A4-action A4 ⊂ Autκ(κ[[z]]) over an algebraically closed
field κ of characteristic 2 in terms of filtration of higher ramification groups
(or equivalently, in terms of the Artin conductor). This part of the project
is described in Exercises 2.13, 2.22, 3.19, and 3.20.

Step II: Hurwitz trees Let f : C → P1
κ be a wildly branched G-Galois cover.

Suppose that f lifts to characteristic zero. Let eP be the ramification index of
a branch point P . The Riemann-Hurwitz formula implies that the contribution
of a wild branch point P to g(C) is hP · (eP − 1)/2 for some hP ≥ 2, where
hP may be computed in terms of the higher ramification groups of P . This
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is in contrast to the situation in characteristic zero, where this contribution is
(eP − 1)/2. This implies that to lift f one has to lift the branch point P to hP
distinct points in characteristic zero. To find a lift of the cover f , these lifts of
P need to have exactly the “right” p-adic distance. This makes it hard to lift
f by explicitly writing down equations. In our project, we will therefore take a
different route, namely we will use so-called Hurwitz trees.

The motivation for the definition of the Hurwitz trees comes from the theory
of stable reduction. The definition of the stable reduction of a Galois cover can
be found in § 3.1 of the notes. The notes contain two worked out examples.
Example 3.8 computes the stable reduction of a p-cyclic cover branched at three
points, where p is an odd prime. In Section 3.2, we discuss the reduction of a
Q8-cover to characteristic 2. The idea behind a Hurwitz tree is very important
in the project. Therefore studying these examples is highly recommended as a
preparation for the lectures and working on the project.

Let f0 : C → D be a G-Galois cover in characteristic p, and suppose that
f lifts to a cover fk : Y → X ' P1

k over a field k of characteristic zero. We
denote the stable reduction of fk to characteristic p by f̄ : Ȳ → X̄. Excluding
trivial cases, the curve Ȳ will contain C as an irreducible component, but Ȳ
will also have other irreducible components. Let Ȳi 6= C be one of these, and
X̄i the corresponding irreducible component of X̄. Then the induced cover
Ȳi → X̄i will be inseparable. With such an inseparable cover, we associate the
differential data. These are combinatorial data which may be described purely
in characteristic p.

Let L (resp. K) by the completion of the function field of Y (resp. X) at
the generic points of Ȳi (resp. X̄i). We may restrict to the case that the residue
field extension of L/K is purely inseparable. In this case there exists a theory
of higher ramification groups and Swan conductors analogous to that in the
classical situation considered in Step I. This is described in § 2 of the notes
(Situation B: the case of residual dimension one.) Especially important here is
the definition and properties of the differential Swan conductor in § 2.4 of the
notes.

Best understood is the case that [L : K] = p. In this case the differential
data consists of a differential forms. This case is described more detailedly in
§ 2.5 of the notes. Concrete examples of differential data associated with the
stable reduction of a Galois cover can be found in Exercises 3.16, 3.18 and 3.19.

For G = A4, which we consider in the project, the differential data do not
consist of a single differential form, but form a vector space of differential forms.
While this case is slightly more difficult to understand than the case of degree p,
it is still similar enough that one may adapt the methods. A concrete example
of such a vector space of differential forms is constructed in Exercise 3.20.

Step III The Bertin Obstruction Suppose given a wildly branched G-Galois
cover f0 : C → D over κ. The Bertin Obstruction, described in § 4.1 of notes,
is a first necessary condition for liftability of the cover. It gives a condition
on the Artin representation corresponding to a wild ramification point of the
cover. In Corollary 4.3 of the notes it is shown that the Bertin Obstruction
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vanishes for covers with Galois group Z/pnZ in characteristic p > 0. Further
concrete instances of the Bertin Obstruction are discussed in Proposition 4.4
(G = Fp o Z/mZ) and Exercise 4.7-4.8 (G = Q8).

(Project b) Show that the Bertin Obstruction vanishes for every local A4-action (Ex-
ercise 4.6).

Step IV Obstruction coming from the existence of a Hurwitz tree
Suppose given a wildly branched G-Galois cover f0 : C → D over κ. We have
seen in Step II that if f0 lifts to characteristic zero, then we may associate
with f0 a set of differential data in characteristic p. A Hurwitz tree consist
of these differential data, together with additional combinatorial data, which
satisfy certain compatibility conditions. The existence of such a Hurwitz tree for
a given cover in characteristic p is a necessary condition for liftability. Explicitly
constructing a Hurwitz tree is also a first important step in constructing a lift.

In the case that G = Z/pZ one can find the definition of a Hurwitz tree in the
literature. We do not give the full definition in the notes, as this is rather long
and not very enlightening. However, in this case it is known that the existence
of such a Hurwitz tree is also sufficient for liftability.

For more general groups, we only find partial definitions of a Hurwitz tree.
Though a good candidate for the combinatorial structure is known, it is not
known which compatibility conditions one has to require to ensure liftability.
Defining Hurwitz trees for A4-covers in characteristic 2, may be part of the
project.

In § 5 of the notes we discuss methods for constructing differential data in
positive characteristic. We mainly focus on the case that the Sylow p-subgroup
of G has order p. This case is best understood. The main result of this part
of described in § 5.3, where we take G = Fp o Z/mZ. Namely in that section,
we explicitly construct Hurwitz trees for G-Galois covers. It turns out that one
of the main tools is using solutions of hypergeometric differential equations in
positive characteristic.

(Project c) Construct Hurwitz trees for every local A4-action (Section 5.4).

The main goal of this part of the project is to adapt techniques known in
the case that G = Fp o Z/mZ to the case G = A4.

Step V Lifting the cover to characteristic zero In the final step of the
project, we prove the actual lifting result. Here we use in an essential way
the Hurwitz trees constructed in Step IV. The Hurwitz tree seperate the points
which eventually will be the reduction of the branch points of the characteristic-
0 cover. In some sense, the Hurwitz tree already determines the p-adic distance
between the branch points of the lifted cover in characteristic zero.

With this preparation, one may use techniques from formal patching to
reduce the problem to a local problem around these distinguished points. This

4



local problem may be solved “explicitly”. This part will eventually be described
in § 6 of the notes, which is currently not yet available.

(Project d) Show that every Hurwitz tree constructed in (c) can be lifted to an A4-
action in characteristic zero. (Section 6; this part is not yet written.)
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