Arizona Winter School 2012 Project Descriptions

David Harbater and Julia Hartmann

March 2012

1 Patching

The aim of our first project is to extend the range of the patching techniques.

1. Try to generalize the results in Section 2 of the notes to the case when T is replaced by $k[[s, t]]$.
2. Let S be a smooth projective surface over a field k, and write F for the function field of S. Let X denote an isomorphic copy of \mathbb{P}_{k}^{1} in S. For $U \subseteq X$ non-empty, let R_{U} denote the subring of F consisting of the rational functions on \widehat{X} that are regular at the points of U. Let \mathcal{I} be the ideal sheaf defining X in S, and let \widehat{R}_{U} denote the \mathcal{I}-adic completion of the ring R_{U}. Also write R_{\varnothing} for the subring of F consisting of the rational functions that are regular at the generic point of X, and write $\widehat{R}_{\varnothing}$ for its \mathcal{I}-adic completion. To what extent to the results of Section 2 of the notes remain true in each of the cases below?
(a) $S=\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$, and $X=\mathbb{P}_{k}^{1} \times O$ where O is the point 0 on \mathbb{P}_{k}^{1}.
(b) $S=\mathbb{P}_{k}^{2}$, and X is the line at infinity.
(c) S is the result of blowing up the point $x=y=0$ in \mathbb{P}_{k}^{2}, and X is the exceptional divisor.

Can you make any conjectures about how the behavior depends on the choice of the pair (S, X) ?
3. Let p be a prime number and consider $\mathbb{P}_{\mathbb{F}_{p}}^{1}$, with function field $\mathbb{F}_{p}(x)$. Can one define fields F_{1}, F_{2}, F_{0} in this context, such that analogs of the results of this section hold? What if instead F is replaced by \mathbb{Q} ? This is a very open-ended question.

2 Admissibility

Our second project is targeted at the admissibility problem.

1. With notation as in Section 5 of the notes, find explicit examples of admissible groups over F whose order is divisible by the residue characteristic of k.
2. Is every cyclic extension of $\mathbb{C}((t))(x)$ a maximal subfield of some division algebra over that field?
3. Are all cyclic groups admissible over the field of fractions $\mathbb{C}((x, y))$ of the power series ring $\mathbb{C}[[x, y]]$?
4. What can be said about admissible groups over $k((t))(x)$ if k is not algebraically closed? What if k has positive characteristic? What if $k((t))$ is replaced by \mathbb{Q}_{p} ? Try to formulate conjectures.
