Arizona Winter School 2012 Project Descriptions

David Harbater and Julia Hartmann

March 2012

1 Patching

The aim of our first project is to extend the range of the patching techniques.

- 1. Try to generalize the results in Section 2 of the notes to the case when T is replaced by k[[s,t]].
- 2. Let S be a smooth projective surface over a field k, and write F for the function field of S. Let X denote an isomorphic copy of \mathbb{P}^1_k in S. For $U \subseteq X$ non-empty, let R_U denote the subring of F consisting of the rational functions on \widehat{X} that are regular at the points of U. Let \mathcal{I} be the ideal sheaf defining X in S, and let \widehat{R}_U denote the \mathcal{I} -adic completion of the ring R_U . Also write R_{\varnothing} for the subring of F consisting of the rational functions that are regular at the generic point of X, and write $\widehat{R}_{\varnothing}$ for its \mathcal{I} -adic completion. To what extent to the results of Section 2 of the notes remain true in each of the cases below?
 - (a) $S = \mathbb{P}^1_k \times \mathbb{P}^1_k$, and $X = \mathbb{P}^1_k \times O$ where O is the point 0 on \mathbb{P}^1_k .
 - (b) $S = \mathbb{P}^2_k$, and X is the line at infinity.
 - (c) S is the result of blowing up the point x = y = 0 in \mathbb{P}^2_k , and X is the exceptional divisor.

Can you make any conjectures about how the behavior depends on the choice of the pair (S, X)?

3. Let p be a prime number and consider $\mathbb{P}^1_{\mathbb{F}_p}$, with function field $\mathbb{F}_p(x)$. Can one define fields F_1, F_2, F_0 in this context, such that analogs of the results of this section hold? What if instead F is replaced by \mathbb{Q} ? This is a very open-ended question.

2 Admissibility

Our second project is targeted at the admissibility problem.

- 1. With notation as in Section 5 of the notes, find explicit examples of admissible groups over F whose order is divisible by the residue characteristic of k.
- 2. Is every cyclic extension of $\mathbb{C}((t))(x)$ a maximal subfield of some division algebra over that field?

- 3. Are all cyclic groups admissible over the field of fractions $\mathbb{C}((x,y))$ of the power series ring $\mathbb{C}[[x,y]]$?
- 4. What can be said about admissible groups over k((t))(x) if k is not algebraically closed? What if k has positive characteristic? What if k((t)) is replaced by \mathbb{Q}_p ? Try to formulate conjectures.