
INTRODUCTION TO WILD RAMIFICATION OF
SCHEMES AND SHEAVES

TAKESHI SAITO

1. Brief summary on étale cohomology

In this section, k denotes a field, a scheme will mean a separated
scheme of finite type over k and a morphism of schemes will mean a
morphism over k. We put p = char k.

1.1. Definition and examples of étale sheaves. A morphism X →
Y of schemes is said to be étale if Ω1

X/Y = 0 and if X is flat over Y .

Example 1.1. An open immersion is étale.
The morphism Gm = Spec k[T±1] → Gm defined by T �→ T m is

étale if and only if m is invertible in k.
The morphism Ga = Spec k[T ] → Ga defined by T �→ T p − T is

étale if p > 0.

A family (Ui → X)i∈I of étale morphisms is called an étale covering
if X =

⋃
i∈I Image(Ui → X).

A contravariant functor (= presheaf) F : (Etale schemes over X)→
(Sets) (or→ (Abelian groups)) is called a sheaf if it satisfies the patch-
ing conditions

F(U)
�→ Ker

(∏
i∈I

F(Ui) ⇒
∏
i,j∈I

F(Uij)

)
for every étale covering (Ui → U)i∈I . Here Uij = Ui ×U Uj and Ker
denotes the set (or the abelian group){

(si) ∈
∏
i∈I

F(Ui)
∣∣∣ si|Uij

= sj |Uij
for every i, j ∈ I

}
.

Example 1.2. A representable functor Hom(−, Y ) is a sheaf. In par-
ticular, a constant sheaf, the additive sheaf Ga, the mulitiplicative sheaf
Gm etc. are actually sheaves.

A morphism f : X → Y of schemes defines the push-forward functor
(Etale sheaves/X)→ (Etale sheaves/Y ) by f∗F(V ) = F(V ×Y X). It
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has a left adjoint functor f ∗. For an open immersion j : U → X, the
extension by 0 is defined by j!F = Ker(j∗F → i∗i∗j∗F).

We will use the same notation for a scheme and for the corresponding
representable functor. An étale sheaf representable by a finite étale
scheme is called a locally constant constructible sheaf.

For a group scheme G over X, we say an étale sheaf T with G-action
G× T → T is an G-torsor if étale locally on X, T is isomorphic to G
with the canonical action of G.

Example 1.3. For an invertible OX-module L, the sheaf Isom(OX ,L)
is a Gm-torsor. Conversely, a Gm-torsor on X defines an invertible
OX-module by flat descent.

1.2. Etale cohomology. Etale sheaves of abelian groups on a scheme
X form an abelian category with enough injectives and hence the right
derived functor H i(X,−) of the left exact functor Γ(X,−) is defined.
The compact support cohomology H i

c(X,−) is defined as H i(X̄, j!−)
by taking a compactification j : X → X̄. If X itself is proper, we have
H i

c(X,−) = H i(X,−).
If G is a commutative group scheme on X, the set of isomorphism

classes of G-torsors on X is canonically idenitified with H1(X, G). In
particular, H1(X,Gm) is canonically identified with the Picard group
Pic(X) defined as the group of isomorphism classes of invertible OX -
modules. For an integer n invertible in k, the Kummer sequence 0 →
μn → Gm

t�→tn→ Gm → 0 induces an exact sequence

0→ Γ(X,OX)×/(Γ(X,OX)×)n → H1(X, μn)→ Pic(X)[n]→ 0.(1)

Example 1.4. If X is a proper smooth geometrically connected curve,
it gives an isomorphism

H1(Xk̄, μn)→ JacX(k̄)[n](2)

where JacX denotes the Jacobian variety of X. Further, we have an
isomorphism

Pic(Xk̄)/nPic(Xk̄) = Z/nZ→ H2(Xk̄, μn)(3)

and vanishing Hq(Xk̄, μn) = 0 for q > 2.

1.3. Fundamental group. For a geometric point x̄ of a connected
scheme X, the fundamental group π1(X, x̄) is defined by requiring that
the fiber functor

(Finite étale schemes/X)(4)

→ (Finite sets with continuous action of π1(X, x̄))
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defined by X → X(x̄) is an equivalence of categories. If we identify a
commutative finite étale scheme A over X with a finite abelian group A
with the action of π1(X, x̄), the étale cohomology H1(X, A) is identified
with the cohomology H1(π1(X, x̄), A) of the profinite group π1(X, x̄).

We fix a prime number � different from the characteristic of k. We
call an inverse system F = (Fn) of locally constant constructible

sheaves of free Z/�nZ-modules satisfying Fn+1/�
nFn+1

�→ Fn for ev-
ery n a smooth Z�-sheaf. If X is connected, the equivalence (4) of
categories induces an equivalence of categories

(Smooth Z�-sheaves/X)→ (Cont. Z�-representations of π1(X, x̄)).

1.4. The Euler number. For a smooth Q�-sheaf F⊗Q�, its cohomol-
ogy and the compact support cohomology are defined by H i(Xk̄,F ⊗
Q�) = lim←− nH i(Xk̄,Fn)⊗Q� and H i

c(Xk̄,F ⊗Q�) = lim←− nH i
c(Xk̄,Fn)⊗

Q�. They are known to be a Q�-vector space of finite dimension and
known to be 0 for i > 2 dimX. The Euler numbers are defined by

χ(Xk̄,F) =
2 dim X∑

i=0

(−1)i dim H i(Xk̄,F),

χc(Xk̄,F) =
2 dim X∑

i=0

(−1)i dim H i
c(Xk̄,F)

respectively.

Example 1.5. If X is a proper smooth curve of genus g, we have
dim H0(Xk̄,Q�) = 1, dimH1(Xk̄,Q�) = 2g, dimH2(Xk̄,Q�) = 1 and
χ(Xk̄,Q�) = 2− 2g. If U = X \D is the complement of a finite étale
divisor D of degree d > 0 in a proper smooth curve X of genus g, we
have χc(Uk̄,Q�) = 2−2g−d by the long exact sequence→ H i

c(Uk̄,Q�)→
H i(Xk̄,Q�)→ H i(Dk̄,Q�)→.

If X is a proper smooth scheme of dimension d, we have an equality
χ(Xk̄,Q�) = (−1)d deg cd(Ω

1
X/k) with the degree of the top Chern class.

If U = X \D is the complement of a divisor D with normal crossings
in a proper smooth scheme X of dimension d, we have χc(Uk̄,Q�) =
deg(−1)dcd(Ω

1
X/k(log D)).

2. Formula for the Euler number

In this section, we keep the assumption that k is a field and schemes
are separated of finite type over k. We discuss the following problem.

Problem. How do we compute χc(Uk̄,F) for a smooth Q�-sheaf on a
smooth scheme U?
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In fact, we will be interested in computing the difference χc(Uk̄,F)−
rank F · χc(Uk̄,Q�). If char k = 0, we have χc(Uk̄,F) = rank F ·
χc(Uk̄,Q�). In the following, we assume k is a perfect field of charac-
teristic p > 0.

2.1. The Grothendieck-Ogg-Shafarevich formula. If dim U = 1,
we know a classical formula.

Theorem 2.1 (Grothendieck-Ogg-Shafarevich formula [11]). Let X be
a smooth proper curve and U be a dense open subscheme. Then, for a
smooth Q�-sheaf on U , we have

χc(Uk̄,F) = rank F · χc(Uk̄,Q�)−
∑

x∈X\U
SwxF .(5)

Example 2.1. Let π : V → U be a finite etale morphism and F =
π∗Q� be the locally constant sheaf corresponding to the induced repre-

sentation Ind
π1(U)
π1(V )Q�. Let X and Y denote the smooth compactifications

of U and V respectively and π̄ : Y → X be the induced morphism. let
D ⊂ X and E ⊂ Y denote the reduced divisors such that the comple-
ments are U and V respectively. Then, (5) for F = π∗Q� gives

χc(V,Q�) =[V : U ] · χc(U,Q�)

−
∑

x∈X\U

∑
y∈π−1(x)

lengthOY,y
(Ω1

Y (log E)/π̄∗Ω1
X(log D))y.

This gives a sheaf-theoretic reformulation of the Riemann-Hurwitz for-
mula

2gY − 2 = [Y : X](2gX − 2) +
∑

y∈Y \V
lengthOY,y

Ω1
Y/X,y.

2.2. Swan conductor. We recall the definition of the Swan conductor
SwxF from two points of view, corresponding to the upper and the
lower ramification groups respectively (see Section 3).

Let K denote the local field at x. Namely the fraction field of the
completion of the local ring OX,x. Let K̄ be a separable closure of
K and GK = Gal(K̄/K) be the absolute Galois group. Then, by
the map Spec K → U , the pull-back of the �-adic representation of
π1(U, Spec K̄) corresponding to F defines an �-adic representation V
of GK .

The group GK has the inertia subgroup IK = Gal(K̄/Kur) and its
pro-p Sylow subgroup PK = Gal(K̄/Ktr) corresponding to the maximal
unramified extension Kur and the maximal unramified extension Ktr =
Kur(π1/m; p � m) respectively.
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The wild inertia group PK has a decreasing filtration by ramification
groups (Gr

K) indexed by positive rational numbers r > 0. Since the
action of the pro-p-group PK on V factors through a finite quotient,
the filtration defines a decomposition V =

⊕
r≥0 V (r) characterized by

(V (r))Gr
K = 0 for r > 0, (V (r))Gs

K = V (r) for 0 < r < s and V PK = V (0).
The Swan conductor SwxF = SwKV is defined to be

∑
r>0 r ·dim V (r).

The equality SwKV = 0 is equivalent to V = V (0) that means the
action of PK on V is trivial.

To explain another description of the definition, we make an extra
assumption that the action of GK on V factors through a finite quotient
G corresponding to a finite Galois extension L over K. For σ �= 1,∈ G,
we put

sL/K(σ) = −length OL

/(
σ(a)

a
− 1; a ∈ OL, �= 0

)
(6)

The integer sL/K(σ) is 0 unless σ is not an element of the image P ⊂ G
of PK . We define sL/K(1) by requiring

∑
σ∈G sL/K(σ) = 0. Then, the

Swan conductor SwKV is defined by

SwKV =
1

|I|
∑
σ∈P

sL/K(σ) · Tr(σ : V )(7)

where I ⊂ G denotes the image of PK .

2.3. Log product. We formulate a generalization of Theorem 2.1 to
higher dimension by giving a geometric interpretation of the Swan char-
acter sL/K(σ).

Let U be a smooth separated scheme of finite type of dimension d
over k. For a separated scheme S of finite type over k, the Chow group
CH0(S) denotes the group of 0-cycles modulo rational equivalence.
We will give a definition of the Swan class Sw F as an element of
CH0(X \ U)�(ζp∞ ) = CH0(X \ U)⊗�Q(ζp∞) for a compactification X
of U under some extra simplifying assumptions.

For a finite etale Galois covering V → U of Galois group G, we define
the Swan character class

sV/U(σ) ∈ CH0(Y \ V )

for σ ∈ G assuming that Y is a smooth compactification of V satis-
fying certain good properties. We refer to [14, Definition 4.1] for the
definition in the general case that requires alteration.

Assume Y is a proper smooth scheme containing V as the comple-
ment of a divisor D with simple normal crossings. Let D1, . . . , Dn be
the irreducible components of D and let (Y ×k Y )′ → Y ×k Y be the
blow-up at Di×k Di for every i = 1, . . . , n. Namely the blow-up by the
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product of the ideal sheaves IDi×kDi
⊂ OY ×kY . We call the complement

Y ∗k Y ⊂ (Y ×k Y )′ of the proper transform of (D ×k Y ) ∪ (Y ×k D)
the log product. The diagonal map δ : Y → Y ×k Y is uniquely lifted
to a closed immersion δ̃ : Y → Y ∗k Y called the log diagonal. We
introduce the log product in order to focus on the wild ramification.

Example 2.2. Assume X = Spec k[T1, . . . , Td] and D is defined by
T1 · · ·Tn for 0 ≤ n ≤ d. Then, the log product P = X ∗k X is the
spectrum of

A = k[T1, . . . , Td, S1, . . . , Sd, U
±1
1 , . . . , U±1

n ]/(S1 − U1T1, . . . , Sn − UnTn)

(8)

and the log diagonal δ̃ : X → P = X ∗k X is defined by U1 = · · · =
Un = 1 and Tn+1 = Sn+1, . . . , Td = Sd.

2.4. Swan character class and an open Lefschetz trace formula.
Let σ ∈ G be an element different from the identity and let Γ be a closed
subscheme of Y ∗k Y of dimension d = dimY such that the intersection
Γ ∩ (V ×k V ) is equal to the graph Γσ of σ. By the assumption that
V is etale over U , the intersection Γσ ∩ ΔV with the diagonal ΔV =
δ(V ) ⊂ V ×k V is empty. Hence the intersection product (Γ, Δlog

Y )Y ∗kY

with the log diagonal Δlog
Y = δ̃(Y ) ⊂ Y ∗k Y is defined in CH0(Y \V ).

The intersection product (Γ, Δlog
Y )Y ∗kY is shown to be independent of

the choice of Γ under the assumption that V → U is extended to a map
Y → X to a proper scheme X over k containing U as the complement of
a Cartier divisor B and that the image of Γ in the log product X ∗k X
defined with respect to B is contained in the log diagonal Δlog

X .
The Swan chararacter class sV/U(σ) ∈ CH0(Y \ V ) for σ �= 1 is

defined by

sV/U(σ) = −(Γ, Δlog
Y )Y ∗kY .(9)

For σ = 1, it is defined by requiring
∑

σ∈G sV/U(σ) = 0. For σ �= 1, we
have

2 dim V∑
q=0

(−1)qTr(σ∗ : Hq
c (Vk̄, Q�)) = − degk sV/U(σ)(10)

by a Lefschetz trace formula for open varieties [14, Theorem 2.3.4] for
a prime number � different from the characteristic of k.

Example 2.3. Assume that V is a curve and let Y be a smooth com-
pactification. We have CH0(Y \ V ) =

⊕
y∈Y \V Z. For σ �= 1,∈ G, we
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have

sV/U(σ) = −
∑

y∈{y∈Y |σ(y)=y}
length Oy

/(
σ(a)

a
− 1; a ∈ Oy, �= 0

)
· [y].

(11)

2.5. Swan class and the generalization of the GOS formula.
Let � be a prime number different from p = char k > 0. We consider
a smooth �-adic sheaf F on U and define the Swan class SwUF ∈
CH0(X \ U)�(ζp∞ ). Here we only give a definition assuming that there
exist a finite etale Galois covering f : V → U trivializing F and a good
compactification Y of V as above.

We refer to [14, Definition 4.2.2] for the definition in the general
case that requires reduction modulo � and Brauer traces. Let G de-
note the Galois group Gal(V/U) and M be the representation of G
corresponding to F . Then, the Swan class is defined by

SwUF =
1

|G|
∑
σ∈G

f∗sV/U(σ) · Tr(σ : M).(12)

By the equality (11), this is an immediate generalization of the classical
definition (7).

The Lefschetz trace formula for open varieties (10) implies the fol-
lowing generalization of the Grothendieck-Ogg-Shafarevich formula:

Theorem 2.2 ([14, Theorem 4.2.9]). Let U be a separated smooth scheme
of finite type over k. For a smooth �-adic sheaf F on U , we have

χc(Uk̄,F) = rank F · χc(Uk̄, Q�)− degk SwUF .(13)

3. Ramification groups of a local field

We discuss a geometric definition of the filtration by ramification
groups of Galois groups of local fields. Let K be a complete discrete
valuation field with not necessarily perfect residue field F = OK/mK .

3.1. The lower and the upper ramification groups. For a finite
Galois extension L over K, the Galois group G = Gal(L/K) has two
decreasing filtrations, the lower numbering filtration (Gi)i∈� and the
upper numbering filtration (Gr)r∈�,>0 .

In the classical case where the residue field is perfect, they are the
same up to renumbering by the Herbrand function [1, Chapitre IV
Section 3]. However, their properties make good contrasts. The lower
one has an elementary definition and is compatible with subgroups
while the upper one has more sophisticated definition and is compati-
ble with quotients. The lower one is simply defined by Gi = Ker(G→
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Aut(OL/mi
L)). More geometrically, it is rephrased by using rigid ge-

ometry as follows.

3.2. Rigid geometric picture. Take a presentation

OK [X1, . . . , Xn]/(f1, . . . , fn)→ OL

of the integer ring of L. We consider the n-dimensional closed disk
Dn defined by ‖x‖ ≤ 1 over K in the sense of rigid geometry and
the morphism of disks f : Dn → Dn defined by f1, . . . , fn. Then the
Galois group G is identified with the inverse image f−1(0) of the origin
0 ∈ Dn. In other words, we have a cartesian diagram

G ��

��

Dn

f

��
{0} �� Dn.

(14)

The subgroups Gi and Gr are defined to consist of the points of G
that are close to the identity in certain senses. For the lower one,
the closeness is simply measured by the distance. Namely, the lower
numbering subgroup Gi ⊂ G consists of the points σ ∈ G satisfying
d(σ, id) ≤ ‖πi

L‖ for a prime element πL of L.
To define the upper numbering filtration, we consider, for a rational

number r > 0, the inverse image Vr = {x ∈ Dn | d(f(x), 0) ≤ ‖πK‖r} ⊂
Dn of the closed subdisk of radius ‖πK‖r, as an affinoid subdomain
containing G. The upper numbering subgroup Gr consists of the points
in G contained in the same geometric connected component of Vr as
the identity.

3.3. Interpretation via schemes. In the following, we give a defini-
tion of of a logarithmic variant of the upper numbering filtration only
using schemes, under the following extra assumption:

(G) There exist a smooth scheme X over a perfect field k, a smooth

irreducible divisor D of X and an isomorphism OK → ÔX,ξ to the
completion of the local ring at the generic point ξ of D.

In the description using rigid geometry above, a key construction is
shrinking of the radius. For schemes, the corresponding construction
is the blow-up.

Let L be a finite Galois extension of K of Galois group G. Then,
by replacing X by an stale neighborhood of ξ if necessary, there exist
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G-torsor V over the complement U = X \D and a cartesian diagram

Spec L −−−→ V⏐⏐� ⏐⏐�
Spec K −−−→ U

of G-torsors such that the normalization Y of X in V → U is smooth
over k and finite flat over X and the reduced inverse image E of D is
a smooth divisor of Y .

In the product X×k S, we have divisors D×k S and X ×k DS where
DS = Spec F ⊂ S = Spec OK denotes the closed point. We consider
the blow-up (X ×k S)′ of X ×k S at their intersection D ×k DS and
define the log product P = X ∗k S ⊂ (X ×k S)′ to be the complement
of the proper transforms of D ×k S and X ×k DS. The generic fiber
P ×S Spec K is U ×k Spec K. Let Q denote the normalization of P in
the finite etale covering V ×k Spec K of U ×k Spec K.

The canonical map S → X is uniquely lifted to a section s : S → P .
In the cartesian diagram

T

��

i �� Q

f

��
S

s �� P

(15)

we have T = Spec OL and the vertical arrows are finite flat. This
diagram should be regarded as a scheme theoretic counterpart of (14).

We consider a finite separable extension K ′ of K containing L as a
subextension, in order to make a base change. We put S ′ = Spec OK ′,
F ′ = OK ′/mK ′ and let e = eK ′/K be the ramification index. Let r > 0
be a rational number and assume that r′ = e′r is an integer. We regard
the divisor R′ = r′DS′ = Spec OK ′/mr′

K ′ of S ′ as a closed subscheme of
PS′ = P ×S S ′ by the section s′ : S ′ → PS′ induced by s : S → P .

We consider the blow-up of PS′ at the center R′ and let P
(r)
S′ denote

the complement of the proper transform of the closed fiber PS′×S′ DS′.

The scheme P
(r)
S′ is smooth over S ′ and the closed fiber P

(r)
S′ ×S′ DS′

is the vector bundle Θ
(r)
F ′ over F ′ such that the F ′-vector space con-

sisting of F ′-valued points is canonically identified with Ω1
X/k(log D)⊗

m−r′
K ′ /m−r′+1

K ′ .

Example 3.1. Assume X = Spec k[T1, . . . , Td] and D = (T1). Then,
we have OK = k(T2, . . . , Td)[[T1]] and X ×k S = Spec OK [S1, . . . , Sd].
The canonical map S → X induces a closed immersion S → X ×k S
defined by Si �→ Ti.



10 TAKESHI SAITO

The log product P = X ∗k S is Spec OK [U±1
1 , S2, . . . , Sd] with the

canonical map P = X ∗k S → X×k S defined by S1 �→ U1T1. If π′ is a

uniformizer of K ′, the scheme P
(r)
S′ = X ∗k S is Spec OK ′[V1, . . . , Vd]

with the canonical map P
(r)
S′ → P = X ∗k S defined by U1 �→ 1 +

π′r′V1, Si �→ 1 + π′r′Vi for 1 < i ≤ d.

We consider the normalizations Q̄
(r)
S′ and T̄S′ of Q ×P P

(r)
S′ and of

T ×S S ′ respectively. Then, the diagram (15) induces a diagram

T̄S′

��

i(r)
�� Q̄

(r)
S′

f(r)

��

S ′ s(r)
�� P

(r)
S′ .

(16)

By the assumption that K ′ contains L, the scheme T̄S′ is isomorphic to
the disjoint union of finitely many copies of S ′ and the geometric fiber
T̄F̄ = T̄S′ ×S′ F̄ is identified with Gal(L/K).

3.4. Definition of the upper ramification groups. After replacing

K ′ by some finite separable extension, the geometric closed fiber Q̄
(r)

F̄
=

Q̄
(r)
S′ ×S′ Spec F̄ is reduced and the formation of Q̄

(r)
S′ commutes with

further base change. We call such Q̄
(r)
S′ a stable integral model. The

finite map i(r) : T̄S′ → Q̄
(r)
S′ induces surjections

T̄F̄ = Gal(L/K)

i
(r)
∗ ��������������

i
(r+)
∗ �� f (r)−1(0)

��

π0(Q̄
(r)

F̄
)

(17)

of finite sets to the set of geometric connected components and to the

inverse image of the origin 0 ∈ P
(r)

F̄
= Θ

(r)

F̄
.

Theorem 3.1 ([5, Theorems 3.3, 3.8], [15, Section 1.3]). Let L be a fi-
nite Galois extension over K of Galois group G and we consider a
diagram (15) as above.

1. For a rational number r > 0, we take a finite separable extension

K ′ of K containing L such that eK ′/Kr is an integer and that Q
(r)

S̄′ is a
stable integral model.

Then, the inverse image i
(r)−1
∗ (i

(r)
∗ (1)) = Gr

log ⊂ G is independent of
the choice of diagram (15) or an extension K ′ and is a normal subgroup

of G. Further the surjection i
(r)
∗ (17) induces a bijection G/Gr

log →
π0(Q̄

(r)

F̄
).
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2. Let the notation be as in 1. Then, there exist rational numbers
0 = r0 < r1 < . . . < rm such that Gr

log = Gri
log for r ∈ (ri−1, ri] ∩Q and

i = 1, . . . , m and Gr
log = 1 for r > rm.

We put Gr+
log = Gri

log for r ∈ [ri−1, ri) ∩ Q and i = 1, . . . , m and

Gr
log = 1 for r ≥ rm. Then, the surjection i

(r+)
∗ (17) induces a bijection

G/Gr+
log → f (r)−1(0).

3. For a subfield M ⊂ L Galois over K and for a rational number
r > 0, the subgroup Gal(M/K)r

log ⊂ Gal(M/K) is the image of Gr
log =

Gal(L/K)r
log.

The proofs of 1 and 3 are rather straightforward. That of 2 requires
some result from rigid geometry.

If L is an abelian extension of K, it is concretely described using the
Artin-Schreier-Witt theory as follows.

Example 3.2 ([12], [8]). A cyclic extension L of degree pm+1 is de-
fined by a Witt vector by the isomorphism Wm+1(K)/(F − 1) →
H1(K, Z/pm+1Z) of Artin-Schreier-Witt theory. An increasing filtra-
tion on Wm+1(K) is defined by

F nWm+1(K)

= {(a0, . . . , am) ∈Wm+1(K) | pm−ivK(ai) ≥ −n for i = 0, . . . , m}.
The filtration on H1(K, Z/pm+1Z) induced by the canonical surjec-

tion Wm+1(K) → H1(K, Z/pm+1Z) is considered in [12]. For G =
Gal(L/K), the filtration (Gn

log)n≥0 indexed by integers is the dual of the

restriction to Hom(Gal(L/K), Z/pm+1Z) ⊂ H1(K, Z/pm+1Z). Namely,
we have Gn

log = {σ ∈ G | c(σ) = 0 if c ∈ F nH1(K, Z/pm+1Z)}. Fur-
ther, for a rational number r ∈ (n− 1, n] ∩Q, we have Gr

log = Gn
log.

3.5. Graded pieces. We study the graded pieces. Let Ω1
OK

(log) de-
note the free OK-module Ω1

X/k(log D)ξ ⊗OK of rank dimX. By abuse

of notation, let Ω1
F (log) denote the F -vector space Ω1

OK
(log) ⊗OK

F .

Then, we have an exact sequence 0 → Ω1
F → Ω1

F (log)
res→ F → 0 of F -

vector spaces of finite dimension. We extend the normalized discrete
valuation v of K to a separable closure K̄ and, for a rational number
r, we put mr

K̄
= {a ∈ K̄ | v(a) ≥ r} and mr+

K̄
= {a ∈ K̄ | v(a) > r}.

The F̄ -vector space mr
K̄

/mr+
K̄

is of dimension 1.

Corollary ([6, Theorem 2.15], [15, Theorem 1.24, Corollary 1.25]). Let
L be a finite Galois extension of Galois group G. Then, for a rational
number r > 0, the graded quotient Grr

logG = Gr
log/G

r+
log is abelian and

killed by p.
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Further, there exists a canonical injection

Hom(Grr
logG, Fp)→ HomF̄ (mr

K̄/mr+
K̄

, Ω1
F (log)⊗F F̄ ).(18)

This is a consequence of the group structure and the étale isogeny
proved in Theorem 4.1.

For a non-trivial character χ ∈ Hom(Grr
logG, Fp), we call the image

rswχ ∈ HomF̄ (mr
K̄

/mr+
K̄

, Ω1
F (log) ⊗F F̄ ) the refined Swan character of

χ.

Example 3.3 ([12], [8]). We keep the notation in Example 3.2. We
define a canonical map F md : Wm+1(K)→ Ω1

K by sending (a0, . . . , am)

to apm−1
0 da0+· · ·+dam. It maps F nWm+1(K) to F nΩ1

K = m−n
K Ω1

OK
(log)

for n ∈ Z and induces an injection

GrnH1(K, Z/pm+1Z)→ GrnΩ1
K = HomF (mn

K/mn+1
K , Ω1

F (log))(19)

for n > 0.
Let L be a cyclic extension of degree pm+1 corresponding to a char-

acter χ ∈ H1(K, Z/pm+1Z). The smallest integer n ≥ 0 such that
χ ∈ F nH1(K, Z/pm+1Z) is called the conductor of χ and is equal
to the smallest rational number r such that the ramification of L is
bounded by r+. The character is ramified if and only if the conductor
is > 0. For a ramified character χ of conductor n > 0, the image of
the class of χ by the injection (19) in HomF (mn

K/mn+1
K , Ω1

F (log)) ⊂
HomF̄ (mn

K̄
/mn+

K̄
, Ω1

F (log)⊗F F̄ ) is the refined Swan character rswχ.

4. Wild blow-up and the characteristic class

Let X be a smooth separated scheme of finite type over a perfect
field k of characteristic p > 0 and U = X \ D be the complement of
a divisor D with simple normal crossings. We consider a finite etale
G-torsor V over U for a finite group G and study the ramification of
V along D.

4.1. Wild blow-up and the group structure. The ramification of
V along D will be measured by linear combinations R =

∑
i riDi with

rational coefficients ri ≥ 0 of irreducible components of D. In the
following, we assume the coefficients of R =

∑
i riDi are integers, for

simplicity.
We consider the log product P = X ∗k X ⊂ (X ×k X)′ and the log

diagonal δ̃ : X → P = X ∗k X as in Section 1.1. We define a relatively
affine scheme P (R) over P . The scheme P (R) is the complement of the
proper transforms of P ×X R in the blow-up of P at the center R ⊂ X
embedded by the log diagonal map δ̃ : X → P . The log diagonal map
is uniquely lifted to a closed immersion δ(R) : X → (X ∗k X)(R) and
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the open immersion U × U → X ∗k X is uniquely lifted to a closed
immersion j(R) : U × U → (X ∗k X)(R).

Example 4.1. We take the notation in Example 2.2. If we put TR =
T r1

1 · · ·T rn
n , the scheme (X ∗k X)(R) is the spectrum of

A[V1, . . . , Vd]/(U1 − 1− V1T
R, . . . , Un − 1− VnT R,

Sn+1 − Tn+1 − Vn+1T
R, . . . , Sd − Td − VdT

R)(20)

= k[T1, . . . , Td, V1, . . . , Vd, (1 + V1T
R)−1, . . . , (1 + VnT

R)−1].

The immersion δ(R) : X → (X ∗k X)(R) is defined by V1 = · · · = Vd = 0.

The base change P (R) ×X R with respect to the projection P (R) →
X ⊃ R is the twisted tangent bundle Θ(R) = V(Ω1

X(log D)(R)) ×X

R where V(Ω1
X(log D)(R)) denotes the vector bundle defined by the

symmetric algebra of the locally free OX-module Ω1
X(log D)(R).

The projection pr13 : (X×kX)×k(X×kX) = X×kX×kX → X×kX
induces a morphism

μ : (X ∗k X)(R) ×k (X ∗k X)(R) → (X ∗k X)(R)

and defines a groupoid structure on (X ∗k X)(R). The group structure
on the vector bundle Θ(R) = P (R)×X R is compatible with the groupoid
structure.

Let V be a G-torsor over U for a finite group G. We consider the
quotient (V ×k V )/ΔG by the diagonal ΔG ⊂ G× G as a finite etale
covering of U ×k U and let Z be the normalization of (X ∗k X)(R) in
the quotient (V ×k V )/ΔG. The diagonal map V → V ×k V induces a
closed immersion U = V/G → (V ×k V )/ΔG on the quotients and is
extended to a closed immersion e : X → Z.

Theorem 4.1. Let X be a separated smooth scheme of finite type over
k and U = X \D be the complement of a divisor with simple normal
crossings. Let R =

∑
i riDi ≥ 0 be an effective Cartier divisor.

Let V be a G-torsor over U for a finite group G. Let X be the nor-
malization of (X ∗k X)(R) in the quotient (V ×kV )/ΔG and e : X → Z
be the section induced by the diagonal.

Assume that Z is etale over (X ∗k X)(R) on a neighborhood of the
image of e : X → Z. Let Z0 ⊂ Z be the maximum open subscheme
etale over (X ∗k X)(R).

1. The base change Z0,R = Z0 ×X R with respect to the projection
Z0 → (X ∗k X)(R) → X ⊃ R has a natural structure of smooth group
scheme over R such that the map eR : XR → Z0,R induced by e : X → Z
is the unit. Further the etale map Z0,R → Θ(R) = (X ∗k X)(R) ×X R
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induced by the canonical map Z → (X ∗k X)(R) is a group homomor-
phism.

2. For every point x ∈ R, the connected component Z0
0,x of the fiber

Z0,x is isomorphic to the product of finitely many copies of the additive

group Ga,x and the map Z0
0,x → Θ

(R)
x is an etale isogeny.

4.2. Ramification of a rank 1 sheaf. As an application, we study
the ramification of a rank 1 sheaf. Let F be a smooth sheaf of rank
1 corresponding to a character χ : π1(U)ab → Λ×. For each irreducible
component Di, let Ki be the local field and ni be the conductor of the
p-part of the character χi : Gab

Ki
→ Λ×. We put R =

∑
i niDi.

We consider a smooth sheaf H = Hom(pr∗2F , pr∗1F) on U × U .

Then, the direct image j
(R)
∗ H by the open immersion j(R) : U ×k U →

(X ∗k X)(R) is a smooth sheaf of Λ-modules of rank 1 on (X ∗k X)(R).

For a component with ri > 0, the restriction of j
(R)
∗ H to the fiber Θ

(R)
ξi

is the Artin-Schreier sheaf defined by the refined Swan character rswχi

regarded as a linear form on Θ
(R)
ξi

by [7, Proposition 4.2.2].
Further, we assume the following condition:

(C) For each irreducible component Di of D such that ri > 0, the
refined Swan character rswi χ defines a locally splitting injection

rswi χ : OX(−R)⊗OX
ODi
→ Ω1

X(log D)⊗OX
ODi

.

This condition says that for each irreducible component, the wild rami-
fication of F is controlled at the generic point. It is called the cleanness
condition and studied in [13].

Theorem 4.2 ([7, Theorem 4.2.6]). Assume the condition (C) above
is satisfied and X is proper. Then, we have

χc(Uk̄,F) = deg(X, X)(X∗kX)(R) .

It is proved by showing that the characteristic class introduced in
the following equals the intersection product (X, X)(X∗kX)(R) . A gen-
eralization to higher rank case is studied in [15, Theorem 3.4].

4.3. Characteristic class. Let X be a separated scheme of finite type
over a field k. As a coefficient ring Λ, we consider a ring finite over
Z/�nZ, Z� or Q� for a prime number � �= char k. Let a : X → Spec k de-
note the structure map and KX = Ra!Λ denote the dualizing complex.
If X is smooth of dimension d over k, we have KX = Λ(d)[2d].

Let F be a constructible sheaf of flat Λ-modules on X and consider
the object

H = RHom(pr∗2F , Rpr!
1F)
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of the derived category Dctf(X ×k X, Λ) of constructible sheaves of
Λ-modules of finite tor-dimension on the product X ×k X. If X is
smooth of dimension d over k and if F is smooth, we have a canonical
isomorphism H → Hom(pr∗2F , pr∗1F)(d)[2d].

A canonical isomorphism

End(F)→ H0
X(X ×k X,H)(21)

is defined in [10]. Hence, we may regard the identity idF as a cohomol-
ogy class idF ∈ H0

X(X×kX,H) supported on the diagonal X ⊂ X×kX.
Let δ : X → X ×k X be the diagonal map. Further in [10], a canonical
map δ∗H → KX is defined as the trace map. The characteristic class

C(F) ∈ H0(X, KX)

is defined as the image of the pull-back δ∗idF ∈ H0(X, δ∗H) by the
induced map H0(X, δ∗H) → H0(X, KX). If X is smooth and if F
is smooth, we have C(F) = rank F · (X, X)X×kX where (X, X)X×kX

denotes the self-intersection in the product X×kX. The Lefschetz trace
formula [10] asserts that, if X is proper, the trace map H0(X, KX)→ Λ
sends the characteristic class C(F) to the Euler number χ(Xk̄,F). In
other words, the characteristic class is a geometric refinement of the
Euler number.

A relation of the canonical class with the Swan class is given in [7,
Theorem 3.3.1].
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Publ. RIMS 45-1 (2009) 25-74.
[9] ——, Ramification and cleanliness, Tohoku Math. J. Centennial Issue, 63 No.

4 (2011), 775-853.



16 TAKESHI SAITO
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