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0 Outline

The Grothendieck-Ogg-Shafarevich (GOS) formula (cf. [SGA5, Exposé X]) is one
of the most classical results in geometric ramification theory. It describes the Euler
characteristic of a smooth `-adic sheaf F on a smooth curve over an algebraically
closed field in terms of a local ramification invariant of F called the Swan conductor.
In [KS08], Kato and Saito obtained a higher-dimensional generalization of it. The
first aim of this project is to find some concrete examples of their rather abstract
formula (for a detailed plan, see Section 1).

The second and main theme of our project is to consider an arithmetic variant
of the GOS formula. Let V be a complete discrete valuation ring with algebraically
closed residue field. Put S = SpecV and consider a schemeX separated of finite type
over S whose generic fiber Xη is smooth. For a smooth `-adic étale sheaf F on Xη, we
can attach the nearby cycle complex RψF , which is an object of the derived category
Db
c(Xs,Q`) of `-adic sheaves over the special fiber of X (cf. [SGA7, Exposé XIII]).

In our project, we will study the compactly supported cohomology H i
c(Xs, RψF),

especially its Euler characteristic χc(Xs, RψF) =
∑

i(−1)i dimQ` H
i
c(Xs, RψF). If

X is proper over S, the proper base change theorem tells us that H i
c(Xs, RψF) is

isomorphic to H i(Xη,Fη), the `-adic cohomology of the generic fiber. In this case,
no contribution of ramification of F appears. However, if X is not proper over S,
the nearby cycle cohomology H i

c(Xs, RψF) should reflect arithmetic ramification
of F . Note that H i

c(Xs, RψF) is not necessarily isomorphic to H i
c(Xη,Fη). The

Euler characteristic χc(Xη,Fη) of the latter can be described by the classical GOS
formula, and only reflects ramification of F on the generic fiber.

In the language of rigid geometry, the nearby cycle cohomology H i
c(Xs, RψF)

can be interpreted as follows. Let X∧ be the formal completion of X along Xs and
X the rigid generic fiber of X∧ in the sense of Raynaud. Then, H i

c(Xs, RψF) is
naturally isomorphic to the étale cohomology H i

c(Xη,F rig
η ) of the rigid space X with

a naturally induced coefficient. In this context, when dimXη = 1, Huber [Hub01]
proved a formula of GOS type1:

χc(Xs, RψF) = χc(Xη,F rig
η ) = rankF · χc(Xη,Q`)−

∑
x∈Xcη\Xη

SwxF .

1Precisely speaking, Huber considered a locally constant torsion sheaf F .
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Here Xc
η is the so-called universal compactification of Xη. To a point x on the

boundary Xc
η \Xη of the universal compactification, a valuation field κ(x) of rank 2

is naturally attached, and a local ramification invariant SwxF at x, an analogue of
the Swan conductor, is defined in a similar way as in the classical case (for example,
we can use the natural ramification filtration on the Galois group of κ(x)). This
formula provides a powerful method to study the cohomology of some arithmetic
curves, such as the Lubin-Tate tower for GL(2) (cf. [Wew05]).

In this project, we will try to understand the formula above in the style of Kato-
Saito’s ramification theory, and generalize it to a higher-dimensional case. For a
detail, see Section 2.

1 The case over a field

Throughout this section, let k be an algebraically closed field with characteristic
p > 0. Fix a prime number ` different from p.

1.1 Warming up: one-dimensional case

Let X be an irreducible proper smooth curve over k and U a non-empty open
subset of X. To a smooth Q`-sheaf F on U and a point x ∈ X \ U , we can
attach a ramification invariant Swx(F) ∈ Z called the Swan conductor (for the
definition, see Saito’s lecture notes). By using this invariant, the Euler characteristic
χc(U,F) =

∑2
i=0(−1)i dimQ` H

i
c(U,F) can be computed as follows:

Theorem 1.1 (The Grothendieck-Ogg-Shafarevich formula)

χc(U,F) = rank(F) · χc(U,Q`)−
∑

x∈X\U

Swx(F).

Problem 1.2 Fix an integer m ≥ 1 which is prime to p. We have an étale covering
of Gm = Spec k[T, T−1] defined by the equation Sm = T (the Kummer covering).
It is a Galois covering with Galois group Z/mZ. Therefore, a non-trivial character

χ : Z/mZ −→ Q×` gives rises to a smooth sheaf Lχ of rank 1 over Gm.

i) Consider the compactification Gm ↪−→ P1 of Gm (namely, consider the case
where X = P1 and U = Gm). For the points 0,∞ ∈ P1 \A1, compute the Swan
conductors Sw0(Lχ), Sw∞(Lχ).

ii) By using the GOS formula, compute the Euler characteristic χc(Gm,Lχ). Ob-
serve thatH i

c(Gm,Lχ) = 0 for i 6= 1, and determine the dimension ofH1
c (Gm,Lχ).

Problem 1.3 We have an étale covering of A1 = Spec k[T ] defined by the equation
Sp − S = T (the Artin-Schreier covering). It is a Galois covering with Galois group

Z/pZ. Therefore, a non-trivial character ψ : Z/pZ −→ Q×` gives rises to a smooth
sheaf Lψ of rank 1 over A1.
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i) Consider the compactification A1 ↪−→ P1 of A1 (namely, consider the case where
X = P1 and U = A1). For the point∞ ∈ P1 \A1, compute the Swan conductor
Sw∞(F).

ii) By using the GOS formula, compute the Euler characteristic χc(A1,Lψ). Ob-
serve thatH i

c(A1,Lψ) = 0 for i 6= 1, and determine the dimension ofH1
c (A1,Lψ).

iii) More generally, for f ∈ k[T ], we can consider the smooth sheaf of rank 1 over
A1 associated with the étale covering defined by Sp − S = f . If we identify f
with the morphism f : A1 −→ A1, then this sheaf is nothing but the pull-back
f ∗Lψ. Can you compute Sw∞(f ∗Lψ) and χc(A1, f ∗Lψ)?

Problem 1.4 (cf. [SGA41
2
, Sommes trig.]) Here we assume that k = Fq, where

q = pn is a power of p. Fix a non-trivial multiplicative (resp. additive) character
χ : F×q −→ Q` (resp. ψ : Fq −→ Q`). Then, the étale covering Gm,Fq −→ Gm,Fq ;
x 7−→ xq−1 and χ give a smooth sheaf Lχ of rank 1 over Gm,Fq = Spec Fq[T, T−1].
Similarly, the étale covering A1

Fq −→ A1
Fq ; x 7−→ xq − x and ψ give a smooth sheaf

Lψ of rank 1 over A1
Fq = Spec Fq[T ]. We denote the pull-back of Lχ and Lψ to

Gm = Spec k[T, T−1] by the same symbols.

i) Compute χc(Gm,Lψ ⊗ Lχ) and dimQ` H
1
c (Gm,Lψ ⊗ Lχ) by the GOS formula.

ii) Use the Grothendieck-Lefschetz trace formula (cf. [SGA41
2
, Rapport, Théorème

3.2]) to prove the following:

G(χ, ψ) :=
∑
a∈F×q

ψ(a)χ(a) =
2∑
i=0

(−1)i Tr
(
Frobq;H

i
c(Gm,Lψ ⊗ Lχ)

)
.

The left hand side is called the Gauss sum.

iii) Observe that the natural map H1
c (Gm,Lψ ⊗ Lχ) −→ H1(Gm,Lψ ⊗ Lχ) is an

isomorphism. By this and the Weil conjecture, we may conclude that every
eigenvalue α of Frobq on H i

c(Gm,Lψ⊗Lχ) satisfies |ι(α)| = q1/2 for an arbitrary

isomorphism of fields ι : Q`

∼=−−→ C. Together with i), we obtain a well-known

identity |ιG(χ, ψ)| = q1/2.

1.2 Higher-dimensional case

In [KS08], the GOS formula has been generalized to the higher-dimensional case.
We would like to give some concrete examples of their theory. Here we consider
F`-sheaves instead of Q`-sheaves. In fact, the definition of the Swan conductor for
Q`-sheaves in [KS08] is reduced to that for F`-sheaves. Fix a non-trivial character

ψ : Z/pZ −→ F×` .
Put U = G2

m = Spec k[S, T, S−1, T−1]. For a, b ∈ Z, consider the morphism
fa,b : U −→ A1; (x, y) 7−→ xayb. We want to compute χc(U, f

∗
a,bLψ) by the GOS

formula (the definition of Lψ is the same as in Problem 1.3).
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Problem 1.5 Consider the case where (a, b) = (1,−1). Write f = f1,−1.

i) Let X be the blow-up of P2 at the origin. Then f : U −→ A1 extends to
f : X −→ P1, which gives a compactification of f . Compute the Swan divisor
sw(f ∗Lψ) of f ∗Lψ and the refined Swan conductor with respect to this compact-
ification (cf. [Kat89], [Kat94], [KS08, §5]. In particular, [Kat94, (3.6)] will be
useful for our calculation). Observe that f ∗Lψ is clean with respect to U ⊂ X.

ii) Use the GOS formula to obtain χc(U, f
∗Lψ).

iii) Compare the result in ii) with Laumon’s GOS formula ([Lau83, Théorème
1.2.1]).

Problem 1.6 Next consider the case where (a, b) = (1,−2). Write f = f1,−2.

i) Let W be the blow-up of A2 = Spec k[S, T ] along the ideal (S, T 2). Since W is

not smooth over k, we take a toric resolution W̃ of W . In this case, W̃ is the
blow-up of W along the strict transform of the ideal (S, T ). Then f : U −→ A1

extends to f : W̃ −→ P1, which gives a partial compactification of f . Compute
the Swan divisor sw(f ∗Lψ) of f ∗Lψ and the refined Swan conductor with respect

to this partial compactification. Is f ∗Lψ clean with respect to W̃?

ii) Find a nice compactification U ↪−→ X so that f ∗Lψ is clean with respect to it.
Compute the Swan divisor.

iii) Use the GOS formula to obtain χc(U, f
∗Lψ). To compute the intersection num-

ber, it will be convenient to use the intersection theory on toric varieties (cf.
[Ful93, Chapter 5]).

Problem 1.7 Extend the arguments in Problem 1.5 and Problem 1.6 to f ∗a,bLψ for
general (a, b). Is it possible to apply a similar method to the case of dimension
greater than 2?

Problem 1.8 A similar but slightly different case is considered by Denef and Loeser
([DL91]). Can we recover their result [DL91, Theorem 1.2] by using the GOS formula
(at least in the 2-dimensional case)?

2 Arithmetic case

In this section, let K be a complete discrete valuation field of mixed characteristic
(0, p). Denote by OK the ring of integers of K. We write vK for the normalized
valuation K× −� Z. Assume that the residue field k of OK is algebraically closed.

Let us recall Huber’s GOS formula for rigid curves ([Hub01]). Here we use ter-
minology in rigid geometry. Let U be a quasi-compact rigid curve which is separated
and smooth over K, and F a smooth F`-sheaf on U. We have the universal com-
pactification Uc of U (cf. [Hub01, 5.9, Example 5.10]). For each x ∈ Uc \ U, a
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2-dimensional henselian valuation field κ(x) with valuation vx : κ(x)× −� Γx is nat-
urally attached. The field κ(x) is an extension field of K and we have the following
commutative diagram:

K×
vK // //

� _

��

Z
m 7→(m,0)

��

κ(x)×
vx // // Γx oo

∼=
(∗)
// Z× Z,

where Z × Z is considered as a totally ordered commutative group by the lexico-
graphic order, and (∗) is an ordered isomorphism (in fact, (∗) is uniquely determined
by the commutative diagram above).

By using ramification theory for Gκ(x) = Gal(κ(x)sep/κ(x)), we can define the
Swan conductor Swx(F) ∈ Z. As in the classical GOS formula, this ramification-
theoretic invariant is related to the Euler characteristic χc(UK ,F):

χc(UK ,F) = rank(F) · χc(UK ,F`)−
∑

x∈Uc\U

Swx(F).

See [Hub01, Theorem 10.2]. Here we call it Huber’s GOS formula.
Recall the definition of Swx(F). Let j : U ↪−→ Uc be the natural open immersion.

Then, the stalk of j∗F at x gives an F`-representation ρF ,x of Gκ(x). Take a finite
Galois extension L/κ(x) such that ρF ,x factors through Gal(L/κ(x)). The valuation
vx canonically extends to a valuation vx : L× −� ΓL on L, where ΓL ⊂ Γx ⊗Z Q is
again naturally isomorphic to Z× Z.

Definition 2.1 Let γL be the minimal element in {γ ∈ ΓL | γ > 0} (it corresponds

to (0, 1) ∈ Z × Z). Let #: ΓL −→ Z be the map ΓL ∼= Z × Z pr2−−→ Z. It is

characterized by #vK(a) = 0 for a ∈ K× and #γL = 1.
For σ ∈ Gal(L/κ(x)) with σ 6= 1, put

hL/κ(x)(σ) = min
{
vx

(σ(a)− a
a

) ∣∣∣ a ∈ L×} ∈ Γx.

It is known that if $L ∈ L× satisfies vx($L) = γL, then

hL/κ(x)(σ) = vx

(σ($L)−$L

$L

)
.

Define sL/κ(x) : Gal(L/κ(x)) −→ Z by

sL/κ(x)(σ) = −#hL/κ(x)(σ) (σ 6= 1), sL/κ(x)(1) =
∑
σ 6=1

#hL/κ(x)(σ).

Then, there exists a virtual representation SwL/κ(x) of Gal(L/κ(x)) over Z` whose
character coincides with sL/κ(x) (cf. [Hub01, Theorem 4.1]). Now we put

Swx(F) = Swκ(x)(ρF ,x) = dimF` HomGal(L/κ(x))(SwL/κ(x)⊗Z`F`, ρF ,x).
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Remark 2.2 We can also define the Swan conductor by using the upper ramifica-
tion filtration of Gκ(x) (cf. [Hub01, §2]), as in the classical case.

Huber’s GOS formula can also be formulated within the framework of scheme
theory. For given rigid curve U, we can always find

– a regular scheme X which is proper, flat and relatively one-dimensional over
OK ,

– and an open subscheme U of X such that Xs \ Us consists of finite points and
the special fiber Xs is smooth at every point in Xs \ Us

such that the rigid generic fiber of the formal completion of U along Us is isomorphic
to U. Assume moreover that our F`-sheaf F on U is induced from a smooth F`-sheaf,
also denoted by F , on the generic fiber Uη of U . Then,

– we have χc(UK ,F) = χc(Us, RψF), and

– there exists a canonical bijection Uc \ U ∼= Xs \ Us.
For x ∈ Uc\U = Xs\Us, the 2-dimensional valuation field (κ(x), vx) can be described
as follows. Let Y be the unique irreducible component of Xs containing x and ξ
the generic point of Y . Then, ξ gives a prime ideal p of the henselian local ring
A = OhX,x. Let Vx be the inverse image of A/p under the canonical surjection
Ap −→ Ap/p = FracA/p. It is a two-dimensional valuation ring; indeed, Ap and
A/p are discrete valuation rings, and the construction above is a well-known process
to compose two valuation rings. For an arbitrary lift t̃ ∈ OX,x of a local coordinate
t of Y at x, the valuation vx : FracAp −→ Z × Z corresponding to Vx can be
characterized by the formula vx(at̃

m) = (vK(a),m), where a ∈ K and m ∈ Z≥0. We
can identify (FracAp, vx) with the valuation field (κ(x), vx).

2 The representation
ρF ,x of Gκ(x) is the pull-back of the π1(Uη)-representation attached to F under the
natural homomorphism Gκ(x) = π1(FracAp) −→ π1(U).

Problem 2.3 Consider the case where X = P1
OK and U = SpecOK [T, T−1]. For

an integer m ≥ 0, we have a covering of U defined by the equation Sm = T ,
which is étale over the generic fiber. This covering and a non-trivial character

χ : Z/mZ −→ F×` give rises to a smooth sheaf Lχ of rank 1 over Uη. Compute
χc(Us, RψLχ) by using Huber’s GOS formula. More generally, consider the case of
a covering defined by the equation Sm = f , where f ∈ OK [T ].

Problem 2.4 Assume that K contains a primitive p-th root of unity ζp. We put
z = ζp − 1 and consider a covering of A1

OK = SpecOK [T ] defined by the equation

(1− zS)p − 1

zp
= −f,

where f ∈ OK [T ] (cf. [KS10, §8.1]). On the generic fiber, it is a Kummer covering
of degree p; on the other hand, it induces an Artin-Schreier covering T p− T = f on

2Actually they are slightly different (we need certain completion of Frac Ap), but it does not
affect computations of the Swan conductor.
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the special fiber. Let U ⊂ A1
OK be the étale locus of this covering, and X = P1

OK .

This covering and a non-trivial character ψ : Z/pZ −→ F×` give a smooth sheaf Lf,ψ
of rank 1 over Uη. Compute χc(Us, RψLf,ψ) by using Huber’s GOS formula.

If the rank of F is one, Swx(F) can be described by means of the class field
theory for higher dimensional local fields (cf. [Kat87, §4]). This suggests us that
Swx(F) is related to the refined Swan conductor in [Kat89] and [Kat94].

Problem 2.5 In the cases of Problem 2.3 and Problem 2.4, compute the refined
Swan conductor of Lχ and Lf,ψ, respectively (to do it, [Kat89, §4] and [KS10, §8]
will be useful). Find a relationship between Swx and the refined Swan conductor.

Problem 2.6 Consider a higher-dimensional generalization of Huber’s GOS for-
mula in the rank 1 case by using the refined Swan conductor.

Problem 2.7 A proof of Huber’s GOS formula is based on the Lefschetz trace for-
mula [Hub01, Theorem 6.3]. Instead of this formula, use the log Lefschetz trace
formula of Kato-Saito [KS10, §1] to obtain another GOS formula. Note that, in
general if X is a proper strictly semistable OK-scheme and U is an open subscheme
of X such that H = X \ U is flat over OK and (X,Xs ∪H) is a strictly semistable
pair (cf. [dJ96, 6.3]), then the nearby cycle cohomology H i

c(Us, RψQ`) is isomor-
phic to H i

c(UK ,Q`). This makes it possible to apply the log Lefschetz formula to
H i
c(Us, RψQ`).

Problem 2.8 Try to find a higher-dimensional generalization of the formula devel-
oped in Problem 2.7 by using a similar method as in [KS08]. Compare it with the
rank 1 case considered in Problem 2.6.
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1981), Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 193–207.

[Wew05] S. Wewers, Swan conductors on the boundary of Lubin-Tate spaces,
preprint, arXiv:math/0511434, 2005.

[SGA41
2
] P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569,

Springer-Verlag, Berlin, 1977.

[SGA5] Cohomologie l-adique et fonctions L (SGA5), Lecture Notes in Mathemat-
ics, Vol. 589, Springer-Verlag, Berlin, 1977.
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