Division Algebras and Patching

David Harbater / Julia Hartmann
F a field

Recall: A central simple alg. \mathbb{F}
is a finite dimensional associative F-algebra with no
nontrivial two-sided ideals and has center F.

A division algebra \mathbb{F} is a CSA \mathbb{F}
in which every non-zero element has inverse.

$H = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$

$i^2 = j^2 = -1 \quad ij = k = -ji$
#1 has subfields \(\mathbb{R}, \mathbb{C} \)

\[\text{division}\mathbb{F}, \ a \in \mathbb{D}\backslash\mathbb{F} \]

\[\mathbb{F} \supseteq \mathbb{F}[a] \supseteq \mathbb{D} \rightarrow \mathbb{F}[a]\] subfield

Natural to study subfields.
Def: G a finite group

We say G is admissible if \exists

- a G-Galois field extension E/F
- an F-division algebra D containing E

such that $[E:F] = \text{deg}_F(D) = \sqrt{\dim_F(D)}$

Ex: $G = \mathbb{Z}/2\mathbb{Z}$ complex conjugation over \mathbb{C}/\mathbb{R}

$\Rightarrow G$ admissible over \mathbb{R}.
Remarks:

1) If ELF is as in Def., then E is a maximal subfield of D

2) If G is admissible as a division alg. over D and Ext. ELF, structure of D can be recovered from E and G.
Def: A finite group. A crossed product algebra A is defined by

- E is a finite G-Galois extension
- $A := \bigoplus_{\sigma \in \mathcal{G}} E u_{\sigma} \quad \sigma \in \mathcal{G}
 \quad u_{\sigma} = 1$

- A 2-cocycle $c : G \times G \to E^*$
 \[\sigma(c(\tau, \rho)) \cdot c(\sigma, \tau \rho) = c(\sigma \tau, \rho) \cdot c(\sigma, \tau) \]
 for all $\sigma, \tau, \rho \in G$
1. \(c \) normalized
\[
c(\lambda, \sigma) = \lambda = c(\sigma, \lambda) \quad \text{all } \sigma \in G
\]

2. Multiplication defined by
\[
\sigma \cdot b = \sigma(b) \cdot u_\sigma \quad \text{all } b \in E, \sigma \in G
\]
\[
u_\sigma \cdot u_\tau = c(\sigma, \tau) u_{\sigma \tau} \quad \text{all } \sigma, \tau \in G
\]

Lemma: A \(G \)-crossed product algebra is a CSA / F.
\[H = (R \otimes R) \oplus (R \otimes R) j \]

\[u_\sigma \cdot a = j (\alpha + i\beta) \]

\[= (\alpha - i\beta) j \]

\[= \sigma(a) \cdot u_\sigma \]

Generally:

\(G \) admissible with division algebra \(D, E \) surject

\(\Rightarrow D \) is \(G \)-crossed product.
Cyclic algebras

A cyclic of order n, E_1F a G-Cohn extension, $G = \langle \sigma \rangle$, $\alpha \in F^n$

$0 \leq i, j \leq n - 1$

$$\delta_{\sigma, \alpha} (\sigma^i, \sigma^j) = \left\{ \begin{array}{ll}
1 & \text{if } i + j < n \\
\alpha & \text{if } i + j \geq n
\end{array} \right.$$

Check: $\delta_{\sigma, \alpha}$ is normalized 2-cocycle

Def: $A = (G, E_1F, \sigma)$ is the crossed product algebra wrt. G and $\delta_{\sigma, \alpha}$, called cyclic algebra
\[A = \bigoplus_{i=0}^{n-1} E e^i \]
\[e \cdot b = \sigma(b) \cdot e, \quad b \in E \]
\[e^n = a \]
Theorem (Brumer, Hasse, Noether)

Every cyclic group is admissible over \mathbb{Q}

Theorem (Schacher, 1968)

If G is admissible over \mathbb{Q} then all Sylow subgroups of G are metacyclic (\leq extension of cyclic by cyclic).

("Sylow-metacyclic")

Known for certain classes, e.g. solvable groups (Sonn)

Conjectured in general (Schacher)
Theorem (H&H, D. Krashen)

K complete discretely valued field with alg. closed residue field k

F a one variable function field over K

G a finite group, $\text{char}(k) + 161$

Then:

G admissible over F \iff all Sylow subgroups of G are abelian metacyclic
Here: \(F = \frac{k(t)(x)}{K} \)

WTS: \(C \) admissible \(\Rightarrow \) every flow subgraph of \(C \) is oblique metacyclic.

Recall: \(A \cdot B \ csa \Rightarrow A \otimes B \ csa \)

Wedderburn: Every csa is of the form \(\text{Mat}_n(D) \) some division algebra \(D \).

Let define tensor product of division algebras

\(A \cdot B \) algebra, \(A \otimes B = \text{Mat}_n(D) \), define: \(A \cdot B = D \)
$Br(F) : \text{ set of division alg. } IF \text{ with two multiplicative Brauer group}$

d $\in Br(F)$

$\text{per}(\alpha) : \text{ order in } Br(F), \text{ always finite.}$

F as before, S set of discrete valuations on F

$\nu \in S$, let k_{ν} denote residue field

$Br(F)' := \{ \alpha \in Br(F) : (\text{per}(\alpha), \text{char}(k_{\nu})) = 1 \text{ all } \nu \in S \}$

Known: $\nu \in S \Rightarrow$ \exists homomorphism

$\ln_{\nu} : Br(F)' \rightarrow H^2(k_{\nu}, O/2)$
Define \(\text{rank} : \text{Br}(F)' \to \prod_v H^2(k_v, O_{/2}) \) \(v \in S \).

Say that \(\alpha \in \text{Br}(F)' \) is determined by ramification if

\[\text{per}(\alpha) = \text{per}(\text{ram}_v(\alpha)) \]

for some \(v \in S \).

Colliot - Thélèse, C. Jaguar, Ramíndel: Fix prime \(p \)

\[\exists S \subseteq S \text{ s.t.} \]

1) \(\text{ram}_v \) is injective

2) none of the residue fields \(k_v \) (\(v \in S \))

has char. \(p \).
\(\delta \in \mathfrak{Br}(F) \Rightarrow \delta = \delta_p + (\delta - \delta_p) \)

s.t.
\[\text{per}(\delta)_p = \text{per}(\delta_p) \]
\[(\text{per}(\delta - \delta_p), p) = 1 \]

Lemma: \(\delta \in \mathfrak{Br}(F) \), \(\mathfrak{J} \) as above

= \(\delta_p \) is determined by ramification.

Proof idea:

1) Fix prime \(p \) arbitrarily (\(\mathfrak{J} \))
2) Let \(\mathfrak{I} \) as above
D: \mathbb{G}-crossed product division alg., max. subfield \mathbb{E}

$L|D_p$ is determined by ramification (lemma)

w.r.t. that \mathbb{V}

\hat{E}/\hat{E}^P when P is p-Sylow subgroup.