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4 2 Local to Global Principle
Along theselines we can think of the natural map
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as recording the local behavior of functions
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If f E X Xn and 2v Cx xitQ
s t f v O then f up O tpf where

Vp is the image of V in Qp

Global root of f 7 local roots of f
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Local GlobalPrinciple
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Whywe would like this
Over112 tricks for determining if there's a realSdn
like disc of a quadratic degree signetc
Over Ip Hensel'sLemma
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But local global principle does not hold in
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4.3 Salvaging Local Global

We start by introducing a useful tool
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Now for somegreat news

Hasse MinkowsiTheorem
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iv if 21 a then 81 btc or 8fatbtc similarly for b c

Proofof therest exerciseCsl

4 4 Proof of Hasse Minkowski

Hasse Milkowski n 2 ProfessorChau

Hasse Mi3kowski In 3 dueto Legendre

2005
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