

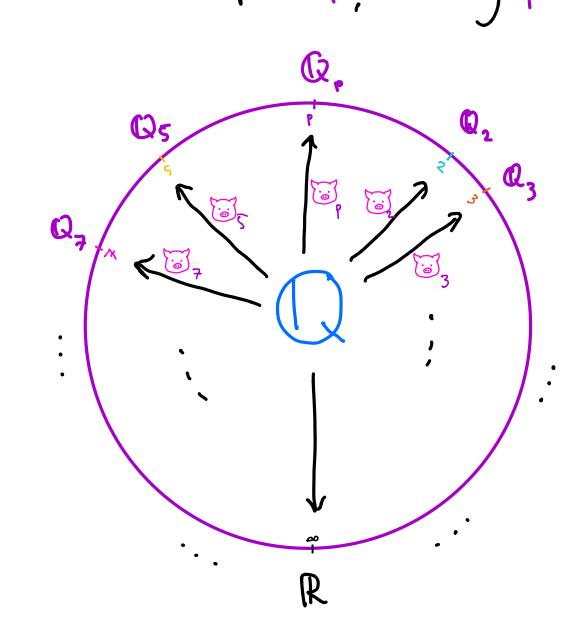
4.1 Hensel's Analogy: Prime and Space

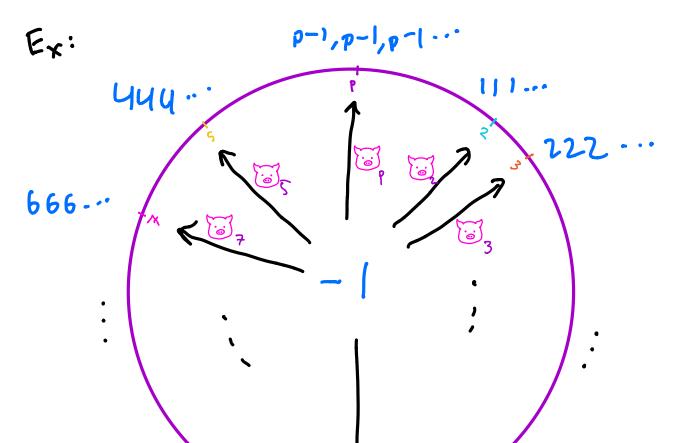
C[x] = functions on	Z = functions on
the curve A'c	{p:p prime}
	· · · · · · · · · · · · · · · · · · ·
$\frac{Evaluating}{f \in \mathbb{C}[x]} \text{ at } x = c^{2}$	Evaluating $n \in \mathbb{Z}$ at p :
$\pi_{\mathcal{C}}:\mathbb{C}[x]\longrightarrow\mathbb{C}[x]/(x-c)\cong\mathbb{C}$	$\pi_{e}:\mathbb{Z}\longrightarrow\mathbb{Z}/p\mathbb{Z}$
$f \mapsto \pi(f) = f(c)$ "evaluation at x=c"	(n →TI(n)= n (mod p) "evaluation at p"
Examples:	Examples:
$f = x^3 - 2x^2 - 4x + 8$ b= 1	n=12 p=2
	m = -25 q = 3
• x3-2x2-4x+8 EC[x]/x-b	• TL (12) = 12 mod 2 = 0 + Hz

•	$ \begin{array}{c} $	$T_{2}(-25) = 1 \mod 2 = 1 \in \mathbb{F}_{2}$ • $T_{1}(T_{2}) = 12 \mod 3 = 0 \in \mathbb{F}_{3}$ $T_{1}(-25) = -1 \mod 3 = 2 \in \mathbb{F}_{3}$
	$\frac{\text{Rational functions}}{\left((x) = \text{quotients f} \right)}$ $f_{g} \in (\text{tx}) g \neq 0$	<u>Rational numbers</u> Q=quotients I n.mtZ nFO
•	<u>Expansion around a point</u> (((x-c)) Laurent series:	Expansion around a prive R, field of product #5: Zb:pi i=n. « Can be my clive
۵	Lowent/Taylor series expansion of a function \rightarrow map $T: \mathbb{C}(x) \longrightarrow \mathbb{C}((x-c))$ $h:= f \longrightarrow \mathbb{E}_{c_i}(x-c)^i$ reduced	• Expansion into provito: • $f = \frac{1}{2} + \frac$
•	CTX-CI power series X-C I g 1 c is not a "pole" of h (h is defined at c)	• Zp p-adic integers p X m D e "exrits in" IL/e II

(3 solution the end p)
(3 solution the end p)
(4)
$$\in C \subseteq x - C I$$

(3 solution the end p)
(4) $\in C \subseteq x - C I$
(1) $= h f(i) + h'(i)(x - i) + \frac{h'(i)}{2!}(x - i) + \frac{h'(i)}$



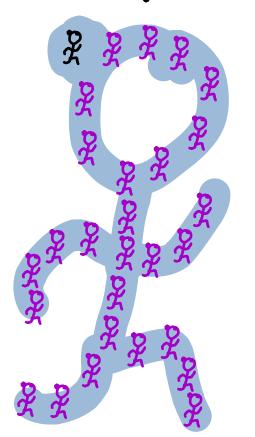


· (f f E Q[X₁,...,X_n] and $\exists v = (x_{n-1},x_{n}) \in \omega^{n}$ s.t. f(v)=0, then f(v_{p})=0 ~ v p \leq \infty, where v_p is the image of v in Qp

· "Glubal" roat of f ~ "Local" routs of f.

 $\langle \sim \rangle^{7}$

Local-Global Principle: The existence of solutions in Q of fEQCX, ..., Xn] can be determined by studying solutions of fin Q, Vp 200.



Q-atalanta

unit in
$$\mathbb{Z}_p$$
 in $\mathbb{Z}/p\mathbb{Z}$
 \mathcal{J} in $\mathbb{Z}/p\mathbb{Z}$
 \mathbb{Q} a is a unit
in $\mathbb{Z}/p\mathbb{Z}$
 \mathbb{Q}
 \mathbb{Q} boto \mathbb{C}^{-1}

· But local-global principle does not hold in general ~ (Exercise in pset)

· We start by introducing a useful tool:

(Weak) Approximation Theorem Let V: {pEZ: p prime} U {\$\$\$ and let S be a finile subset of V. Then the image of Q in Jacs: Q > TT Q pes p

Is dense.
That is, for any
$$(x_p)_{p\in S} : x_p \in \mathbb{Q}_p$$
,
for any $(\mathcal{E}_p)_p \in S : \mathcal{E}_p \in \mathbb{R}_{>0}$,
 $\exists x \in \mathbb{Q} : |x-x_p|_p < \mathcal{E}_p \ \forall p \in S$.

and let
$$\chi = \chi + \frac{a}{4}mP_1 \cdot p_n \cdot p_n^N$$
.

Example:
$$\chi_{p} = \pi_{1}, \xi_{p} = \frac{1}{\sqrt{2}}, \chi_{q} = \sqrt{2} = \frac{1}{\sqrt{2}}, \chi_{q} = \sqrt{2} = \frac{1}{\sqrt{2}}, \chi_{q} = \frac{1}{\sqrt{2}}, \chi_{q}$$

•

Hasse-Minkowi Theorem
let
$$F(X_1, X_{2,...}, X_n) \in \mathbb{Q}[X_1, X_{2,...}, X_n]$$

be a quadratic form. Then
 $F(X_1, X_{2,...}, X_n) = O$
has solutions in \mathbb{Q} iff if has solves in $\mathbb{Q}_p \forall p \leq \infty$.

- · Similarly, there are (p+1)/2 #s that can occur on the right
- · Hence there must be some overly, proving lemma.

• WLOG
$$x_{e} \neq 0 \mod p$$
. Let
 $g(X) = aX^{2} + by_{e}^{2} + c = a^{2}$.

· Hensel's Lemma ~ x EZp: g(x)=0 => (x, yo, zo) is a root of f.

$$p = 2, 2 \text{ Yohc}:$$

$$\text{ If } \exists a \text{ soln } (x, y, z) \in \mathbb{Q}_{2}^{3}, \text{ we cons-pose } x, y, z \in \mathbb{Z}_{p} \text{ and one of } x, y, z \text{ has obs.val. 1 (else scale by a suitable power of 2)} \\ \text{ O = } a x^{2} + b y^{2} + c z^{2} = x^{2} + y^{2} + z^{2} \pmod{2} \\ \Rightarrow \text{ WLOG } y = z = 1 \pmod{2}, x^{2} \otimes (mod 2) \\ \Rightarrow y^{2} = z^{2} \equiv 1 \pmod{4}, x^{2} \equiv 0 \mod{4} \\ \Rightarrow \text{ O a + 1b+ 1c = 0 mod 4} \\ \Rightarrow \text{ So, solo over } (z = z) + wo \text{ of } z, b \in sum to 0 mod 4. \end{cases}$$

Theorem
Suppox a, b,
$$(\in \mathbb{Z} \text{ cre relatively prime and squarefree.})$$

Then $a X^2 + b Y^2 + c Z^2 = 0$
thas nontrivial solves in Q iff all of the following hold

i) a, b, c do not all have the same sign ii); f pla and p#2,]reZ: b+r2c=0 mod p (same forb, c) ivid if 2 Kabe, then two of Ea, b, c3 sum to 0 mod 4 iv) if 21 a, then 8 | + + c or 8 | a + + + c () em larly for b, c)

Proof of the rest ' exercise(s).

- Hasse-Milkowski (n=2) Professor Chan!
- · Hasse-Mi3kowski (n=3): due to Legendre

2005

- Suppose
$$f = a\chi^2 + b\chi^2 + cZ^2$$
 with $a, b, c \in Q^x$
and suppose that $\forall p \leq \infty$,
 $\exists v_p := (x_p, y_p, z_p) \in (Q_p)^3$ with $v_p Z(0, o, o)$ and
 $f_p(x_p, y_p, z_p) = 0$.

- Simplifying f:
$$f_p(v_p) = 0$$
 iff $\frac{1}{4}f_p(v_p) = 0$

assume
$$a = 1$$

• If $b = b_1 b_2^{2}$ for some $b_1, b_2 \in \mathbb{Q}$, then
 $f_p(v_p) = (x_p)^{2} + b(y_p)^{2} + c(z_p)^{2}$
 $= (x_p)^{2} + b(b_2 y_p)^{2} + c(z_p)^{2}$
• So may assume $b_1 c$ squarefree integers
and $|b| \leq |c|$.

$$- 5 \circ f = \chi^{2} - b\chi^{2} - cZ^{2}.$$
We induct an m = $|b| + |c|.$

$$- m = 2^{2}: f = \chi^{2} \pm \chi^{2} \pm Z^{2}$$

$$\int f = \chi^{2} \pm \chi^{2} \pm Z^{2} f = hos real zero$$

$$\int f = \chi^{2} \pm \chi^{2} - Z^{2} (10)$$

$$f = \chi^{2} - \chi^{2} - Z^{2} (10)$$

-
$$m > 2$$
:
• Will find "smaller" g st. g has a nontrivial 0
iff f does
• We'll show bis a squere mode.
• If $m > 2$, then $|C| \ge 2$, $C = \pm p_1$. p_m
distinct. Let $p := p_1$.
Lemma: b is a square mode.
• So suppose b f 0 (mod p)
 $x^2 - by^2 - (\overline{x}^2 = 0)$ in $0p$
= $SCaling V_p$ by maxility $|V_p|, k|^3$,
We can assame $x_{p_1} y_{p_1} = e \mathbb{Z}_p$ and
one of $x_{p_1} y_{p_2} = \phi$ has abs. val. 1.
* $x_p^2 - by_p^2 \equiv 0 \pmod{p}$
If $y \equiv 0 + p_1$, $(mod p)$
If $y \equiv 0 + p_1$, $(mod p)$
If $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_1$, $(mod p)$
if $y \equiv 0 + p_2$, $(mod p)$
if $y \equiv 0 + p_2$, $(mod p)$
if $y \equiv 0 + p_2$, $(mod p)$
if $y \equiv 0 + p_2$, $(mod p)$
if $y \equiv 0$, $(mod p)$
if $y \equiv$

$$h := X^{2} - bY^{2} - cZ^{2} \quad has a nondriv. 0 in k$$

for $k = Q$ or Qp for any $p \le \infty$.
$$|c| = \left| \frac{b^{2} - b}{c} \right| \le \frac{|c|}{4} + |c| \quad sraw |c| \ge 2$$

• Finally, $bt \quad \overline{c} = y u^{2} \text{ with } Y, u \in \mathbb{Z}, Y \text{ square free},$
and let $g = X^{2} - bY^{2} - YZ^{2}$. Note: $|Y| < |c|$
By induction a mess contrivial restin $Q = 3f$

- Hasse - Min kowski
$$(n \ge 5)$$

We proceed by induction.
- write $f = a_1 \chi^2 + a_2 \chi_2^2 + (-(a_3 \chi_3^2 + \dots + a_k \chi_1^3))$
- Let
 $S = \{ = 0 \} \cup \{ 2 \} \cup \{ p \text{ prime: } | a_i | p \neq 1 \text{ for some } i \ge 3 \}$
- By the hypothesis, $\exists c_{p_1} \times c_{p_1} \dots \times a_{p_p} \oplus p_{p_1} + (x_{p_1}, x_{p_2}) \ge c_{p_1} = g(x_{p_1}, \dots, x_{p_p}) \oplus p_{p_1} + (x_{p_1}, x_{p_2}) \ge c_{p_1} = g(x_{p_1}, \dots, x_{p_p})$.
Let $\mathscr{Q}_p^{*-} \{ y^2 : y \in \mathscr{Q}_p^{*} \}$. Then \mathscr{Q}_p^{**} open in \mathscr{Q}_p (check!)

- By weak opproximation through,
$$\exists x_1, y_2 \in \mathbf{Q}$$
:

$$\frac{h(x_1, x_2)}{c_p} \in \mathbf{Q}_p^{*2} \forall p \in S.$$
Let $C := h(x_1, x_2)$. Then $h = C$ has a nontrivial solution of \mathbf{Q}_p for $p \in S$.

- Let
$$f_1 = CZ^2 - g_1$$
. Then $f_1 = 0$ has a nontrivial root in Qp for $p \in S$

- If q & S, the coefficients of dq (g) are write so & p (g)=1
- Hence f, they a nontrivial O in Op for all p!
- By induction, f, has a nontrivial oin Q so g= C has a nontrivial solu in Q, so f= 0 has nontrivisolu in Q B