NB: throughout this section, $| \cdot |$ will denote the p-adic absolute value.

5.1 Functions and Continuity

We have now built up \mathbb{Q}_p as an analogue of \mathbb{R} (in particular, as another completion of \mathbb{Q}). We want to develop a theory of functions on \mathbb{Q}_p.

Since we have an absolute value on \mathbb{Q}_p, we can define continuity the same way we do in \mathbb{R}:

Definition 5.1

Let $U \subset \mathbb{Q}_p$ be an open set. A function $f : U \to \mathbb{Q}_p$ is **continuous** at $x_0 \in U$ if for all $\delta > 0$ there exists $\epsilon > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

For example, polynomials are continuous everywhere (same proof as in \mathbb{R}). However, the function defined by $f(x) = 1/x$ for $x \neq 0$ and $f(0) = 0$ is not continuous at 0, since $\lim_{n \to \infty} p^n = 0$ but $1/p^N \to \infty$.

We can also define derivatives similarly!

Definition 5.2

Let $U \subset \mathbb{Q}_p$ be an open set. A function $f : U \to \mathbb{Q}_p$ is **differentiable** at $x_0 \in U$ if the limit

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. If $f'(x)$ exists for every $x \in U$ we say f is differentiable in U.

For example, polynomials are differentiable everywhere (same proof as in \mathbb{R}), and the derivative is what you’d expect.

However, we run into trouble attempting to continue along the real path, since analogues of key theorems needed for calculus and analysis in \mathbb{R} are false. We can state a version of the mean value theorem for \mathbb{Q}_p, but it’s false! Also, there are functions on \mathbb{Q}_p which are not locally constant but have derivative 0 (for example, consider $f : \mathbb{Z}_p \to \mathbb{Q}_p$ defined by $f(\sum_{i=0}^{\infty} a_i p^i) = \sum_{i=0}^{\infty} a_i p^{2i}$).

Since we are missing such key theorems, we can’t develop calculus and analysis for differentiable functions like we do in \mathbb{R}. But all is not lost.
5.2 A series of fortunate events

We restrict our attention to functions defined by power series. This is pretty natural since many important functions in \mathbb{R} arise from power series, like e^X and $\sin X$.

Given a formal power series, we want to determine where it defines a function, i.e. where it converges.

<table>
<thead>
<tr>
<th>Theorem 5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $f(X) = \sum_{n=0}^{\infty} a_n X^n \in \mathbb{Q}_p[[X]]$ and define $\rho = \frac{1}{\limsup \sqrt[n]{</td>
</tr>
<tr>
<td>1. If $\rho = 0$, then $f(x)$ converges only when $x = 0$.</td>
</tr>
<tr>
<td>2. If $\rho = \infty$, then $f(x)$ converges for every $x \in \mathbb{Q}_p$.</td>
</tr>
<tr>
<td>3. If $0 < \rho < \infty$ and $\lim_{n \to \infty}</td>
</tr>
<tr>
<td>4. If $0 < \rho < \infty$ and $</td>
</tr>
<tr>
<td>5. Let $D_f = { x \in \mathbb{Q}_p : f(x) \text{ converges} }$. The function $f : D_f \to \mathbb{Q}_p, x \mapsto f(x)$ is continuous.</td>
</tr>
</tbody>
</table>

Proof: this theorem follows from the fact that a series converges in \mathbb{Q}_p if and only if the terms of the series converge to 0, so $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges if and only if $\lim_{n} |a_n||x|^n = 0$. □

So, for example, for $f(X) = \sum p^n X^n$, $\rho = \infty$ so f converges everywhere. For $g(X) = \sum X^n$, $\rho = 1$ and since the coefficients don’t converge to 0, the region of convergence for g is $B(0,1) = p\mathbb{Z}_p$.

Given formal power series

$$f(X) = \sum_{n=0} a_n X^n \quad \text{and} \quad g(X) = \sum_{n=0} b_n X^n$$

we can define their sum and product series as

$$(f + g)(X) := \sum_{n=0}^\infty (a_n + b_n) X^n \quad \text{and} \quad (fg)(X) = \sum_{n=0}^\infty \sum_{k=0}^n a_k b_{n-k} X^n.$$
You can check that these series behave how we would expect, that is, that if f, g converge at $x \in \mathbb{Q}_p$, then $f + g$ and fg converge at x, and $(f + g)(x) = f(x) + g(x)$ and $f g(x) = f(x) g(x)$.

We will also want to compose functions; can a composition of functions defined by power series be written as a power series, and if so, how? We can solve recursively for what the coefficients of such a series would be, and we call that series their formal composition.

As it turns out, the formal composition is not the composition as a function unless we have some particular conditions.

Theorem 5.4

Let $f(X) = \sum_{n=0}^{\infty} a_n X^n$ and $g(X) = \sum_{n=0}^{\infty} b_n X^n$, and let $h(X)$ be the formal composition $(f \circ g)(X)$. Let $x \in \mathbb{Q}_p$ and suppose that

1. $g(x)$ converges,
2. f converges on the value $g(x)$, and
3. for all n, we have $|b_n x^n| \leq |g(x)|$

Then $h(x)$ also converges, and $f(g(x)) = h(x)$.

This is a result one would hope for in general, but, alarmingly, you can find series f, g and a value $x \in \mathbb{Q}_p$ such that h does converge, but not to f evaluated at $g(x)$ if the above conditions are not satisfied. We omit the proof of the theorem here, but you can find it in Fernando Gouvea’s p-adic Numbers (Theorem 5.3.3).

Given a power series and a point α in its region of convergence, we can recenter the power series around α, writing it as a power series in $X - \alpha$. We can then ask where the new series converges.
Theorem 5.5

Let \(f(X) = \sum a_n X^n \in \mathbb{Q}_p[[X]] \), and let \(\alpha \in D_f \) (so \(f \) converges at \(\alpha \)). For each \(m \geq 0 \), define

\[
b_m = \sum_{n \geq m} \binom{n}{m} a_n \alpha^{n-m}
\]

and \(g(X) = \sum_{m=0}^{\infty} b_m (X - \alpha)^m \).

1. The series defining \(b_m \) converges for all \(m \)
2. \(D_f = D_g \) (same region of convergence)
3. For any \(x \in D_f \), \(f(x) = g(x) \).

We omit the proof (see Gouvea Proposition 5.4.2) but note that it’s enough to show that \(f \) and \(g \) have the same radius of convergence, since \(\alpha \in D_f \cap D_f \), and \(p \)-adic disks “are either concentric or disjoint (like drops of mercury)”–Yves Andrès.

This is a very cool fact, but it does mean that we can’t do analytic continuation the same way we do in \(\mathbb{C} \).

We now describe some ways of determining when power series are equal, and some properties of their derivatives.

Theorem 5.6

Let \(f, g \in \mathbb{Q}_p[[x]] \), and suppose there is a non-stationary (i.e., not eventually constant) sequence \(x_m \in \mathbb{Q}_p \) with \(\lim x_m = 0 \) such that \(f(x_m) = g(x_m) \) for all \(m \). Then \(f(X) = g(X) \) (i.e., \(f, g \) have the same coefficients).

Proof sketch: this is the same proof as in \(\mathbb{R} \). We look at the formal power series of the difference \(f - g \), noting that for a power series \(h \), \(h(x_m) \) converges to the constant term of \(h \) as \(x_m \to 0 \).

Theorem 5.7

Let \(f(X) = \sum a_n X^n \in \mathbb{Q}_p[[X]] \) and let \(f' \) be the formal derivative of \(f \). Let \(x \in \mathbb{Q}_p \).

If \(x \in D_f \), then \(x \in D_{f'} \), and

\[
f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
\]
Proof: First, we note that for \(x \neq 0 \),

\[|na_n x^{n-1}| \leq |a_n x^{n-1}| = \frac{1}{|x|} |a_n x^n| \to 0 \]

and so \(f'(x) \) converges (series in \(\mathbb{Q}_p \)). Next, let \(r \in \mathbb{Q} \) such that \(D_f = B_{cl}(0, r) \). Suppose \(x \neq 0 \) and suppose \(|h| < |x| \leq r \). Then

\[
\frac{f(x + h) - f(x)}{h} = \sum_{n=1}^{\infty} \sum_{m=1}^{n} a_n \left(\frac{n}{m} \right) x^{n-m} h^{m-1}.
\]

Then

\[|a_n \left(\frac{n}{m} \right) x^{n-m} h^{m-1}| \leq |a_n| r^{n-1} \]

where the right quantity converges to 0 and does not depend on \(h \), so we can set \(h = 0 \) to conclude

\[f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}. \]

Now we can see a compelling reason to focus on power series: we do not have the disturbing phenomenon of non-locally constant functions with derivative 0.

Theorem 5.8

Suppose \(f(X), g(X) \in \mathbb{Q}_p[[x]] \), and that \(f, g \) both converge for \(|x| < \rho \). If \(f'(x) = g'(x) \) for all \(|x| < \rho \), then there exists a constant \(C \in \mathbb{Q}_p \) such that \(f(X) = g(X) + C \).

Proof: from Theorem 5.6 and Theorem 5.7, \(f' \) and \(g' \) have the same coefficients, so \(f \) and \(g \) have the same coefficients aside from possibly the constant term.

5.3 Rooting around (because pigs root around)

We’ll now explore the zeros of functions coming from power series. There are a lot of wonderful results!

Theorem 5.9

\(\mathbb{Z}_p \) is compact.

Proof: \(\mathbb{Z}_p \) is a closed subset of \(\mathbb{Q}_p \), so it is complete. And for any \(\epsilon > 0 \), one can find \(N \in \mathbb{N} \) such that \(p^{-N} < \epsilon \), and

\[
\mathbb{Z}_p = \bigcup_{i=0}^{p^N-1} i + p^N \mathbb{Z}_p
\]
is a covering of \mathbb{Z}_p by finitely many balls of radius less than ϵ. So \mathbb{Z}_p is complete and totally bounded, so it is compact.

Theorem 5.10 Strassman’s Theorem

Let $f(X) = \sum_{n=0}^{\infty} a_n X^n$ be a nonzero element of $\mathbb{Q}_p[[X]]$. Suppose that $\lim_{n \to \infty} a_n = 0$. Let N be the integer such that $|a_N| = \max_n |a_n|$ and $|a_n| < |a_N|$ for $n > N$.

Then $f : \mathbb{Z}_p \to \mathbb{Q}_p$ defined by $x \mapsto f(x)$ has at most N zeros. Also, if $\{\alpha_1, ..., \alpha_m\}$ are the zeros of f, then $g \in \mathbb{Q}_p[[X]]$ such that

$$f(X) = (X - \alpha_1) \cdots (X - \alpha_m)g(X)$$

such that g converges on \mathbb{Z}_p and has no zeros in \mathbb{Z}_p.

Proof sketch: induct on N and rearrange series to factor out $X - \alpha$ for roots α.

Next we want to consider roots that aren’t even necessarily in \mathbb{Q}_p. That’s right, we want to look in an algebraically closed field. We could take the algebraic closure of \mathbb{Q}_p, but it turns out that that’s not complete, so we complete that, and thankfully the result is algebraically closed (phew!) We will take the preceding statement as a black box, calling the resulting field \mathbb{C}_p. This is summarized in the following theorem:

Theorem 5.11 Complex numbers but make it p-adic

There exists a field \mathbb{C}_p and a valuation function $v_p(\cdot)$ on \mathbb{C}_p (and hence a non-archimedean absolute value $|\cdot| = p^{-v_p(\cdot)}$) on \mathbb{C}_p such that

1. \mathbb{C}_p contains $\overline{\mathbb{Q}_p}$, and the restriction of $|\cdot|$ to \mathbb{Q}_p coincides with the p-adic absolute value
2. \mathbb{C}_p is complete with respect to $|\cdot|$
3. \mathbb{C}_p is algebraically closed
4. $\overline{\mathbb{Q}_p}$ is dense in \mathbb{C}_p
5. $\{v_p(x) : x \in \mathbb{C}_p\} = \mathbb{Q}$. In particular, if $x \in \overline{\mathbb{Q}_p}$ has minimal polynomial of degree d, then $v_p(x) \in \frac{1}{d}\mathbb{Z}$.

Now that we are assured that there is a nice field in which we can find all our roots, we explore this bucolic idyll with the following tool:
Definition 5.12

Let \(f = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n \) be a polynomial in \(K[X] \). Then the **Newton polygon** of \(f \), denoted \(NP_p(f) \), is the lower convex hull in \(\mathbb{R}^2 \) of the points \(\{(i,v_p(a_i)) : i = 0, 1, ..., n \text{ and } a_i \neq 0 \} \).

One can think of the lower convex hull as being formed by the following procedure: hammer a nail into the plane at each point \((i, v_p(a_i)) \), let a rope hang below all the nails, and then pull the rope straight up above the points \((0, v_p(a_0)) \) and \((n, v_p(a_n)) \) until it is taut.

We illustrate with an example:

The boundary edges of the Newton polygon of \(f \) convey a lot of information about its roots! Define the width of a segment to be its length along the \(x \) dimension.
Theorem 5.13

Let K be either \mathbb{C}_p or a finite extension of \mathbb{Q}_p. Let $f(X) = a_0 + a_1X + a_2X^2 + \ldots + a_nX^n \in K[X]$. Let m_1, \ldots, m_r be the slopes of the boundary edges of $NP_p(f)$, with corresponding widths w_1, \ldots, w_r. Then for each $k : 1 \leq k \leq r$, $f(X)$ has exactly w_k roots (in \mathbb{C}_p, counting multiplicities) of absolute value p^{m_k} (that is, of valuation $-m_k$).

Proof: We omit the proof of the number of roots with a given valuation, but we prove that, given a root $\alpha \in \mathbb{C}_p$ with $f(\alpha) = 0$, then $-v_p(\alpha)$ is a slope of a boundary edge of $NP_p(f)$.

Let S denote the set $\{i, v_p(a_i) : 0 \leq i \leq n, a_i \neq 0\}$, whose lower convex hull is $NP_p(f)$. We have:

$$
\infty = v_p(0) = v_p(f(\alpha)) = v_p(\sum_{i=0}^{n} a_i\alpha^i) \geq \min_{i} \{v_p(a_i, \alpha^i)\}
= \min_{i} \{v_p(\alpha) \cdot i + v_p(a_i)\} = \min\{v_p(\alpha) \cdot x + y : (x, y) \in S\}
$$

If the minimum were uniquely attained, then the inequality would be an equality, which is a contradiction. Hence there must be some $i \neq j$ such that $v_p(\alpha) \cdot i + v_p(a_i) = v_p(\alpha) \cdot j + v_p(a_j)$. Thus, the points $(i, v_p(i))$ and $(j, v_p(j))$ minimize the linear function $v_p(\alpha) \cdot x + y$ along the set S.

Note in general, given a set S of points whose lower convex hull is H, any linear function $l(x, y) = mx + y$ attains its minimum on H at an extremal point, or extremal edge. Thus its minimum on S equals its minimum on the entire convex hull, and is attained at an extremal point or a set of points lying along an extremal edge. One can see this intuitively by varying the line $l(x, y) = c$ for different values of c and noting that, if the line intersects H at some interior point then c can be decreased with the line $l(x, y) = c$ still intersecting H.

In our case, we are minimizing the linear function $l(x, y) = v_p(\alpha) \cdot x + y$ over our set S. As it is minimized at the two points $(i, v_p(i))$ and $(j, v_p(j))$, the edge between these two points is an extremal edge of $NP_p(f)$, whose slope is $-v_p(\alpha)$, the slope of the line $l(x, y) = c$.

One corollary is Eisenstein’s classic criterion for irreducibility. Eisenstein’s criterion states that, given a monic polynomial $f(x) = a_0 + a_1X + \ldots + a_{n-1}X^{n-1} + X^n \in \mathbb{Z}[X]$, where $n > 1$, such that p divides a_i for every i but p^2 does not divide a_0, then f is irreducible over \mathbb{Q}. To see this using Newton polygons, note that $NP_p(f)$ will have a boundary edge from $(0, 1)$ to $(n, 0)$, whose slope is $-\frac{1}{n}$, so all roots of f have valuation $\frac{1}{n}$.

Now let α be a root of f. If its minimal polynomial over \mathbb{Q} has degree d, then $v_p(\alpha) \in \frac{1}{d}\mathbb{Z}$. But $\frac{1}{n} \notin \frac{1}{d}\mathbb{Z}$, so $d = n$. Thus f is irreducible.

5.4 Connecting the dots (another way)

We will now step back and talk about how to construct p-adic functions via interpolation. We will be interested in functions that are uniformly continuous. Recall:

Definition 5.14

Given a field K with absolute value, and a set $S \subset K$, a function $f : S \to K$ is **uniformly continuous** if for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in S$,\

$$|x - y| < \delta \text{ implies } |f(x) - f(y)| < \epsilon$$

Importantly, the same δ works for a given ϵ, regardless of the choice of x, y. The following Theorem explains the importance of uniform continuity.

Theorem 5.15

Let S be a dense subset of \mathbb{Z}_p and $f : S \to \mathbb{Q}_p$ be a function. Then there exists a continuous function $\tilde{f} : \mathbb{Z}_p \to \mathbb{Q}_p$ such that $\tilde{f}(s) = f(x)$ for all $x \in S$ if and only if f is bounded and uniformly continuous. If such an extension \tilde{f} exists, then it is unique.

Proof: Uniqueness of the extension follows from S being dense in \mathbb{Z}_p. Now suppose that a continuous extension \tilde{f} exists. Then it is bounded and uniformly continuous since \mathbb{Z}_p is compact.

Conversely, suppose f is bounded and uniformly continuous. Let $x \in \mathbb{Z}_p$. Since S is dense in \mathbb{Z}_p, we can write $x = \lim x_n$ for $x_n \in S$. Since f is bounded and uniformly continuous, you can show that the sequence $f(x_n)$ is Cauchy, hence converges to a limit $\tilde{f} := \lim f(x_n)$.

For example, we can take $S = \mathbb{Z}$ or even $S = \mathbb{N}$.

Note that in the p-adic setting, we can rephrase uniform continuity as follows. A function f is uniformly continuous if for all $m \in \mathbb{N}$ there exists some $N \in \mathbb{N}$ such that if

$$a \equiv b \pmod{p^N}$$

then

$$f(a) \equiv f(b) \pmod{p^m}$$