Lecture 5: Relearning how to Function 😊

Background image: Fernando Villegas Negrete

NB: Throughout this lecture, ℓ_1 will denote ℓ_1^p

5.1 Functions and Continuity

- We have built up \mathbb{Q}_p as an analogue of \mathbb{R}. We want to develop a theory of functions on \mathbb{Q}_p
We define continuity derivatives like for \(\mathbb{R} \):

Definition

Let \(U \subseteq \mathbb{Q}_p \) be an open set. A function \(f: U \to \mathbb{Q}_p \) is **continuous** at \(x_0 \in U \) if \(\forall \varepsilon > 0 \ \exists \delta > 0 \) s.t.

\[
|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.
\]

- Ex: polynomials in \(X \) cts everywhere, same proof as in \(\mathbb{R} \)
- Nonex: \(f(x) = \frac{1}{x} \) for \(x \neq 0 \) and \(f(0) = 0 \), a.e. \(\lim_{n \to \infty} p^n = 0 \) but \(|\frac{1}{p^n}| \to \infty \)

Definition

Let \(U \subseteq \mathbb{Q}_p \) be an open set. A function \(f: U \to \mathbb{Q}_p \) is **differentiable** at \(x_0 \in U \) if the limit

\[
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
\]

exists.

If \(f'(x_0) \) exists \(\forall x_0 \in U \) we say \(f \) is differentiable in \(U \).

- Ex: polynomials in \(X \) differentiable everywhere, same proof as in \(\mathbb{R} \),
 and for \(f(X) = X^n \), \(f'(X) = nX^{n-1} \)

- We can also state the mean value theorem, but it's false!

- Also, there are functions which are not loc. constant, but...
whose deriv. is the zero function!

\[f : \mathbb{Z}_p \to \mathbb{Q}, \quad f\left(\frac{\mathbb{Z}_p}{i} \right) = \sum_{i=0}^{\infty} a_i p^i \]

12121 ... \to 10201 ...

- We can't do calculus etc the same way as in \(\mathbb{R} \).

5.2 A Series of Fortunate Events

- We focus now on functions defined by power series (in \(\mathbb{R} \) this is how \(e^x \) and \(\sin x \) arise)

- Given a power series, we want to determine where it defines a function (i.e. where it converges, the region of convergence)

Theorem 5.3

Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Q}_p [[x]] \) and define

\[\rho = \frac{1}{\limsup \sqrt[n]{|a_n|}} \]

1. If \(\rho = 0 \), then \(f(x) \) converges iff \(x = 0 \).
2. If \(\rho = \infty \), then \(f(x) \) converges \(\forall x \in \mathbb{Q}_p \).
3. If \(0 < \rho < \infty \), and \(\lim \ln |a_n| = 0 \), then \(f(x) \) converges iff \(|x| \leq \rho \).
4. If \(0 < \rho < \infty \), and \(\lim \ln |a_n| \neq 0 \), then \(f(x) \) converges.
5. Let $D_f = \{ x \in \mathbb{Q}_p : f(x) \text{ converges} \}$. The function $f: D_f \to \mathbb{Q}_p, x \mapsto f(x)$ is continuous.

Proof:

Caution! If the series $\sum_{n=1}^{\infty} x_n$ converges, then $(x_n)_{n \in \mathbb{N}}$ is a null sequence, but the converse is false!

\mathbb{Q}_p:

Follows from the fact that $\sum_{n=1}^{\infty} a_n x^n$ converges iff

$\lim |a_n x^n| = 0$.

The proof for 5 is identical to the proof over \mathbb{R}. ◼

Example: $f(X) = \sum_{n=1}^{\infty} p^n X^n$.

$p = \limsup \frac{1}{2^n(r^n)} = \limsup \frac{1}{|r|^n} = p$, and $|a_n| \to 0$ so $D = B_{e_1}(0,p)$.

Courtesy of Joanne Beckford
- Example: \(g(x) = \sum x^n, \ p = 1, |a_n| \neq 0 \)

 Region of convergence for \(g \): \(B(0,1) = p \mathbb{Z}_p \)

- We can define sum \& product power series, and they are sum \& product as functions.

 For \(f(x) = \sum a_n x^n \), \(g(x) = \sum b_n x^n \),

 \[
 (f+g)(x) = \sum (a_n + b_n)x^n
 \]

 \[
 (fg)(x) = \sum \sum a_n b_{n-k} x^n
 \]

- Can the composition \(fog \) be written as a power series? If so, how?

 - Solve recursively for what the coefficients of \(h(x) = (f \circ g)(x) \) would have to be, call that the formal composition.

Proposition 5.4

Let \(f, g, h \in \mathbb{Q}_p [[x]] \) be as above. Let \(x \in \mathbb{Q}_p \) and suppose

1. \(g(x) \) converges
2. \(f \) converges at \(g(x) \)
3. \(\forall n \ |b_n x^n| \leq |g(x)| \)

Then \(h(x) \) converges and \(f(g(x)) = h(x) \)

- Note: false without 1, 2, 3!
What else might we want to do? Recenter a power series. Where would the new series converge?

Theorem 5.5

Let \(f(x) = \sum a_n x^n \), and let \(d \in D_f \) (\(f \) converges at \(d \)). For each \(m \geq 0 \), define

\[
b_m := \sum_{n=m}^{\infty} \binom{n}{m} a_n d^{n-m}
\]

\[
g(x) := \sum_{m=0}^{\infty} b_m (x - d)^m.
\]

1. The series defining \(b_m \) converges \(b_m \).
2. \(D_f = D_g \) (same region of convergence!)
3. For any \(x \in D_f \), \(f(x) = g(x) \).

Proof: omitted (see Gouvea 5.4.2)

But we note: ETS \(f, g \) have same radii of convergence since \(x \in D_f \land D_g \) and \(p \)-adic disks "are either concentric or disjoint, like drops of mercury" — Yves Andrès
• This is a cool fact, but it means we can't do analytic continuation like we do in \mathbb{C}.

• On to derivatives and differences:

\begin{theorem}
Let $f, g \in \mathbb{Q}_p[[X]]$, and suppose there is a non-stationary (i.e. not eventually constant) sequence $x_m \in \mathbb{Q}_p : \lim x_m = 0$ s.t. $f(x_m) = g(x_m) \forall m$. Then $f(x) = g(x)$ (same coefficients!)
\end{theorem}

Proof sketch: Same as for \mathbb{R}, WTS difference is 0 porer ans. ($f, g \in \mathbb{Q}_p[[X]]$, $\lambda(x_m) \to \text{const. term of } h$.)

\begin{theorem}
Let $f(x) = \sum a_n x^n \in \mathbb{Q}_p[[x]]$ and let f' be the formal derivative of $f(x)$. Let $x \in \mathbb{Q}_p$. If $x \in D_f$ then $x \in D_{f'}$, and
\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
\end{theorem}

Proof: if $x \neq 0$, we see
\[\left| a_n x^n \right| < \left| a_{n-1} x^{n-1} \right| = \frac{1}{\left| a_n \right|} \left| a_{n-1} \right| x^n \to 0 \]
Next, let \(r \in \mathbb{R} : D_f = B_0(0, r) \). Suppose \(0 < |x| \leq r \), then
\[
\frac{f(x+h) - f(x)}{h} = \sum_{n=1}^{\infty} \sum_{m=1}^{n} a_n(n) x^{n-m} h^{m-1}.
\]
then
\[
|a_n(n) x^{n-m} h^{m-1}| \leq |a_n| r^{n-1}
\]
so we can set \(h=0 \) and
\[
f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}
\]
Our coveted result follows immediately!

Theorem 5.8
Suppose \(f, g \in \mathbb{C}_p[0, X] \) and that \(f, g \) converge for \(|x| < p \).
If \(f'(x) = g'(x) \) \(\forall |x| < p \), then \(\exists \) a constant \(C \in \mathbb{C}_p : f(x) = g(x) + C. \)

Proof: \(f', g' \) have the same coefficients, hence so do \(f, g \) aside from potentially the constant term.

5.3 Rooting Around (because pigs root around)

* We now explore the zeros of functions defined by power...
But first, an important and useful topological fact:

Theorem 5.9

\[\mathbb{Z}_p \text{ is compact} \]

Proof: \(\mathbb{Z}_p \) is a closed subset of \(\mathbb{Q}_p \), which is complete, so \(\mathbb{Z}_p \) is complete.

And for \(i > 0 \), \(\exists \ N \in \mathbb{N} : p^{-N} < \varepsilon \). And

\[
\mathbb{Z}_p = \bigcup_{i=0}^{n-1} i + p^n \mathbb{Z}_p
\]

is a covering of \(\mathbb{Z}_p \) by finitely many balls of radius \(< \varepsilon \), so \(\mathbb{Z}_p \) is also totally bounded. \(\Box \)
Back to the zeros:

Strassman’s Theorem

Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be a nonzero elt of \(\mathbb{Q}_p[[x]] \). Suppose \(\lim_{n \to \infty} a_n = 0 \) (so \(f(x) \) converges for \(x \in \mathbb{Z}_p \)).

Let \(N \) be the integer s.t.

\[
|a_N| = \max \{ |a_n| : n \leq N \} \quad \text{and} \quad |a_n| < |a_N| \quad \forall \ n > N.
\]

Then the function \(f: \mathbb{Z}_p \to \mathbb{Q}_p \), \(x \mapsto f(x) \) has at most \(N \) zeros.

Also, if \(\{a_1, \ldots, a_m\} \) are the zeros of \(f \), then \(\exists g \in \mathbb{Q}_p[[x]]: \)

\[
f(x) = (x-a_1) \cdots (x-a_m) g(x)
\]

so \(g \) converges on \(\mathbb{Z}_p \) and has no zeros in \(\mathbb{Z}_p \).

Proof sketch: Induct on \(N \), rearrange series to factor out \(x-a \) for \(a \) a root (Gouvea 5.4.6).

- Consequences: \(f \) has fin. many zeros in \(\mathbb{Z}_p \).
- If f, g agree on infinitely many points in some disk $p^{-n} \mathbb{Z}$, then $f = g$ as power series

- f cannot be periodic if f is nonconstant!

 If $\exists x \in \mathbb{N}$: $f(x+p) = f(x)$ for all $x \in p^{-n} \mathbb{Z}$, f is constant. **No!**

- Next: roots beyond \mathbb{Q}_p

- We'll take the following theorem as a black box:

Theorem 5.11: Complex #s but make it p-adic

There exists a field \mathbb{C}_p and a valuation $v_p(\cdot)$ on \mathbb{C}_p

1. $\mathbb{Q}_p \subset \mathbb{C}_p$ and $1:1$ extends $1:1$
2. \mathbb{C}_p is complete \& algebraically closed
3. \mathbb{Q}_p is dense in \mathbb{C}_p
4. $\text{Ev}_p(x): x \in \mathbb{C}_p \to \mathbb{Q}$
Tool for investigating roots:

Definition: Let \(K = \mathbb{C}_p \) or a fin. ext. of \(\mathbb{Q}_p \). Let \(f = a_0 + a_1 x + \ldots + a_n x^n \in K[x] \). Then the Newton polygon of \(f \), denoted \(NP_p(f) \), is the lower convex hull in \(\mathbb{R}^2 \) of the points

\[
S = \{(i, v_p(a_i)) : i = 0, 1, \ldots, n \text{ and } a_i \neq 0\}
\]

- Procedure: let rope hang below points of \(S \), pull upward until it is taut.

- Example: \(NP_5(f) \)

\[
f(x) = 1 + 5x + \frac{1}{2}x^2 + 3\frac{5}{4}x^3 + 2\frac{5}{4}x^5 + 625x^6
\]

\[
S = \{(0, 0) \quad (1, 1) \quad (2, -1) \quad (3, 1) \quad (5, 2) \quad (6, 4) \}
\]
We define the "width" of a line segment as the length of its projection onto the x-axis.

This simple drawing gives us a ton of information about the roots of f.

Theorem 5.13
Let $f = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n \in K[X]$. Let m_1, \ldots, m_r be the slopes of $NP_p(f)$, with corresponding widths w_1, \ldots, w_r. Then for each $k : 1 \leq k \leq r$, $f(X)$ has exactly w_k roots (in \overline{F}, counting multiplicity) with abs. val p^{-m_k} (so valuation $-m_k$).

(partial) Proof: we will show that if $f(d) = 0$,
If the min is uniquely attained, it becomes a contradiction.

We minimize \(g(x,y) \), where \(g(x,y) = (v, a) \cdot x + y \).

Claim: the min of \(g \) over points of \(S \) must occur at an extremal point of \(NP_\alpha(f) \).

\[v_\alpha(0) = v_\alpha(f(0)) = v_\alpha \left(\sum_{i=0}^{N} a_i \cdot \alpha^i \right) \geq \min \left\{ v_\alpha(a_i \cdot \alpha^i) \right\} \]

\[= \min \left\{ (v_\alpha \cdot \alpha^i) \cdot x + y \mid (x,y) \in S \right\} \]

\(\Box \)

Corollary 5.14: Eisenstein's Criterion

\((v_\alpha \cdot \alpha^i) \cdot x + y = c \) is a line of slope \(-v_\alpha \cdot \alpha^i \).

Points s.t. \(g(x,y) = c \).

\((v_\alpha \cdot \alpha^i) \cdot x + y = c' < c \)

\((v_\alpha \cdot \alpha^i) \cdot x + y = c'' < c \)

\(g \) smaller at \(\Box \).
Let $p \in \mathbb{Z}$ be a prime and let
\[f(X) = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + X^n \in \mathbb{Z}[X] \]
such that $p \mid a_i$ for $i < n$ and $p^2 \nmid a_0$. Then f is irreducible over \(\mathbb{Q} \).

Proof:

- By theorem, all roots of f have valuation $\frac{1}{n}$.
- But if α is a root of $g \in \mathbb{Q}[X]$ and g has degree d, then $v_p(d) \leq \frac{1}{d} \mathbb{Z}$.

\[\text{(ex: if } \alpha^2 = p^3, 2v_p(d) = 3 \text{ so } v_p(d) = \frac{3}{2}) \]

5.41 Connecting the Dots (another way)

- We will now step back and talk about how to construct p-adic functions via interpolation

- Picture in \(\mathbb{N} \):
Example in \(\mathbb{Q}_p \): if \(c \in \mathbb{Z}_p \) and \(a \in \mathbb{Z} \), we can define \(f(a) = c^a = (\underbrace{c \cdot c \cdots c}_{a \text{ times}}) \) (or \(f(a) = \frac{1}{c} \cdots \frac{1}{c} - a \text{ times if } a < 0 \)).

- Want to extend \(f \) to a function defined on more of \(\mathbb{Q}_p \).
Definition
For a valued field K and set $S \subseteq K$, a function $f : S \to K$ is uniformly continuous if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $\forall x, y \in S$,
$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Proposition 5.16
Let $S \subseteq \mathbb{Z}_p$ be a dense subset, and let $f : S \to \mathbb{Q}_p$ be a function. Then \exists a continuous extension $\tilde{f} : \mathbb{Z}_p \to \mathbb{Q}_p$ of f to \mathbb{Z}_p iff f is bounded and uniformly continuous. If \tilde{f} exists, it is unique.

Proof: any extension \tilde{f} is unique by density of S.
\implies: If \tilde{f} is cts, it is bounded and uniformly continuous by compactness of \mathbb{Z}_p.
If \(x \in \mathbb{Z}_p \), then \(k \to \lim x_n \) for \(x \in S \).

so \(\lim (f(x_{n+1}) - f(x_n)) = 0 \) since \(f \) add. unif. cts,

some define:

\[
\forall \epsilon > 0 \exists N \in \mathbb{N} : \forall n \geq N \quad |f(x_{n+1}) - f(x_n)| < \epsilon
\]

. What does this look like in \(\mathbb{Q}_p \)?

Proposition 5.17

For a set \(S \subseteq \mathbb{Q}_p \), a function \(f : S \to K \) is uniformly continuous if \(\forall m \in \mathbb{Z} \exists N \in \mathbb{Z} : \]

\[
d \equiv b \pmod{p^N} \implies f(d) \equiv f(b) \pmod{p^m}
\]

. Hence \(f \) boundedness on a dense set is enough to check for existence of extension of \(f \) on \(S \).